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Abstract

Ensemble approaches for uncertainty estimation have recently been applied to
the tasks of misclassification detection, out-of-distribution input detection and
adversarial attack detection. Prior Networks have been proposed as an approach
to efficiently emulate an ensemble of models for classification by parameteris-
ing a Dirichlet prior distribution over output distributions. These models have
been shown to outperform alternative ensemble approaches, such as Monte-Carlo
Dropout, on the task of out-of-distribution input detection. However, scaling
Prior Networks to complex datasets with many classes is difficult using the train-
ing criteria originally proposed. This paper makes two contributions. First, we
show that the appropriate training criterion for Prior Networks is the reverse KL-
divergence between Dirichlet distributions. This addresses issues in the nature of
the training data target distributions, enabling prior networks to be successfully
trained on classification tasks with arbitrarily many classes, as well as improving
out-of-distribution detection performance. Second, taking advantage of this new
training criterion, this paper investigates using Prior Networks to detect adversarial
attacks and proposes a generalized form of adversarial training. It is shown that the
construction of successful adaptive whitebox attacks, which affect the prediction
and evade detection, against Prior Networks trained on CIFAR-10 and CIFAR-100
using the proposed approach requires a greater amount of computational effort than
against networks defended using standard adversarial training or MC-dropout.

1 Introduction

Neural Networks (NNs) have become the dominant approach to addressing computer vision (CV)
[1, 2, 3], natural language processing (NLP) [4, 5, 6], speech recognition (ASR) [7, 8] and bio-
informatics [9, 10] tasks. One important challenge is for NNs to make reliable estimates of confidence
in their predictions. Notable progress has recently been made on predictive uncertainty estimation for
Deep Learning through the definition of baselines, tasks and metrics [11], and the development of
practical methods for estimating uncertainty using ensemble methods, such as Monte-Carlo Dropout
[12] and Deep Ensembles [13]. Uncertainty estimates derived from ensemble approaches have
been successfully applied to the tasks of detecting misclassifications and out-of-distribution inputs,
and have also been investigated for adversarial attack detection [14, 15]. However, ensembles can
be computationally expensive and it is hard to control their behaviour. Recently, [16] proposed
Prior Networks - a new approach to modelling uncertainty which has been shown to outperform
Monte-Carlo dropout on a range of tasks. Prior Networks parameterize a Dirichlet prior over output
distributions, which allows them to emulate an ensemble of models using a single network, whose
behaviour can be explicitly controlled via choice of training data.
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In [16], Prior Networks are trained using the forward KL-divergence between the model and a target
Dirichlet distribution. It is, however, necessary to use auxiliary losses, such as cross-entropy, to
yield competitive classification performance. Furthermore, it is also difficult to train Prior Networks
using this criterion on complex datasets with many classes. In this work we show that the forward

KL-divergence (KL) is an inappropriate optimization criterion and instead propose to train Prior
Networks with the reverse KL-divergence (RKL) between the model and a target Dirichlet distribution.
In sections 3 and 4 of this paper it is shown, both theoretically and empirically on synthetic data, that
this loss yields the desired behaviours of a Prior Network and does not require auxiliary losses. In
section 5 Prior Networks are successfully trained on a range of image classification tasks using the
proposed criterion without loss of classification performance. It is also shown that these models yield
better out-of-distribution detection performance on the CIFAR-10 and CIFAR-100 datasets than Prior
Networks trained using forward KL-divergence.

An interesting application of uncertainty estimation is the detection of adversarial attacks, which are
small perturbations to the input that are almost imperceptible to humans, yet which drastically affect
the predictions of the neural network [17]. Adversarial attacks are a serious security concern, as there
exists a plethora of adversarial attacks which are quite easy to construct [18, 19, 20, 21, 22, 23, 24, 25].
At the same time, while it is possible to improve the robustness of a network to adversarial attacks
using adversarial training [17] and adversarial distillation [26], it is still possible to craft successful
adversarial attacks against these networks [21]. Instead of considering robustness to adversarial
attacks, [14] investigates detection of adversarial attacks and shows that adversarial attacks can be
detectable using a range of approaches. While, adaptive attacks can be crafted to successfully attack
the proposed detection schemes, [14] singles out detection of adversarial attacks using uncertainty
measures derived from Monte-Carlo dropout as being more challenging to successfully overcome
using adaptive attacks. Thus, in this work we investigate the detection of adversarial attacks using
Prior Networks, which have previously outperformed Monte-Carlo dropout on other tasks.

Using the greater degree of control over the behaviour of Prior Networks which the reverse KL-
divergence loss affords, Prior Networks are trained to predict the correct class on adversarial inputs,
but yield a higher measure of uncertainty than on natural inputs. Effectively, this is a direct general-
ization of adversarial training [17] which improves both the robustness of the model to adversarial
attacks and also allows them to be detected. As Prior Networks yield measures of uncertainty derived
from distributions over output distributions, rather than simple confidences, adversarial attacks need to
satisfy far more constraints in order to both successfully attack the Prior Network and evade detection.
Results in section 6 show that on the CIFAR-10 and CIFAR-100 datasets it is more computationally
challenging to construct adaptive adversarial attacks against Prior Networks than against standard
DNNs, adversarially trained DNNs and Monte-Carlo dropout defended networks.

Thus, the two main contributions of this paper are the following. Firstly, a new reverse KL-divergence
training criterion which yields the desired behaviour of Prior Networks and allows them to be trained
on more complex datasets. Secondly, a generalized form of adversarial training, enabled using the
proposed training criterion, which makes successful adaptive whitebox attacks, which aim to both
attack the network and evade detection, far more computationally expensive to construct for Prior
Networks than for models defended using standard adversarial training or Monte-Carlo dropout.

2 Prior Networks

An ensemble of models can be interpreted as a set of output distributions drawn from an implicit

conditional distribution over output distributions. A Prior Network p(⇡|x⇤; ✓̂) 2, is a neural network
which explicitly parametrizes a prior distribution over output distributions. This effectively allows a
Prior Network to emulate an ensemble and yield the same measures of uncertainty [27, 28], but in
closed form and without sampling.

p(⇡|x⇤; ✓̂) = p(⇡|↵̂), ↵̂ = f(x⇤; ✓̂) (1)

A Prior Network typically parameterizes the Dirichlet distribution3 (eq. 2), which is the conjugate
prior to the categorical, due to its tractable analytic properties. The Dirichlet distribution is defined

2Here ⇡ = [P(y = !1), · · · , P(y = !K)]T - the parameters of a categorical distribution.
3Alternate choices of distribution, such as a mixture of Dirichlets or the Logistic-Normal, are possible.
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as:

p(⇡;↵) =
�(↵0)QK
c=1 �(↵c)

KY

c=1

⇡↵c�1
c , ↵c > 0, ↵0 =

KX

c=1

↵c (2)

where �(·) is the gamma function. The Dirichlet distribution is parameterized by its concentration
parameters ↵, where ↵0, the sum of all ↵c, is called the precision of the Dirichlet distribution. Higher
values of ↵0 lead to sharper, more confident distributions. The predictive distribution of a Prior
Network is given by the expected categorical distribution under the conditional Dirichlet prior:

P(y = !c|x⇤; ✓̂) =Ep(⇡|x⇤;✓̂)[P(y = !c|⇡)] = ⇡̂c =
↵̂cPK

k=1 ↵k

=
eẑc

PK
k=1 ê

ẑk
(3)

where ẑc are the logits predicted by the model. The desired behaviors of a Prior Network, as described
in [16], can be visualized on a simplex in figure 1. Here, figure 1:a describes confident behavior (low-
entropy prior focused on low-entropy output distributions), figure 1:b describes uncertainty due to
severe class overlap (data uncertainty) and figure 1:c describes the behaviour for an out-of-distribution
input (knowledge uncertainty).

(a) Low uncertainty (b) High data uncertainty (c) Out-of-distribution

Figure 1: Desired Behaviors of a Dirichlet distribution over categorical distributions.

Given a Prior Network which yields the desired behaviours, it is possible to derive measures of
uncertainty in the prediction by considering the mutual information between y and ⇡:

MI[y,⇡|x⇤; ✓̂]| {z }
Knowledge Uncertainty

= H
⇥
Ep(⇡|x⇤;✓̂)[P(y|⇡)]

⇤

| {z }
Total Uncertainty

� Ep(⇡|x⇤;✓̂)

⇥
H[P(y|⇡)]

⇤

| {z }
Expected Data Uncertainty

(4)

The given expression allows total uncertainty, given by the entropy of the predictive distribution,
to be decomposed into data uncertainty and knowledge uncertainty. Data uncertainty arises due to
class-overlap in the data, which is the equivalent of noise for classification problems. Knowledge

Uncertainty, also know as epistemic uncertainty [12] or distributional uncertainty [16], arises due to
the model’s lack of understanding or knowledge about the input. In other word, knowledge uncertainty

arises due to a mismatch between the training and test data.

3 Forward and Reverse KL-Divergence Losses

As Prior Networks parameterize the Dirichlet distribution, ideally we would like to have a dataset
Dtrn = {x(i),�(i)}Ni=1, where �(i) are the parameters of a target Dirichlet distribution p(⇡|�).
In this scenario, we could simply minimize the (forward) KL-divergence between the model and
the target for every training sample x(i). Alternatively, if we had a set of samples of categorical
distributions from the target Dirichlet distribution for every input, then we could maximize the
likelihood their under the predicted Dirichlet [29], which, in expectation, is equivalent to minimizing
the KL-divergence. In practice, however, we only have access to the target class label y(i) 2
{!1, · · · ,!K} for every input x(i). When training standard DNNs with cross-entropy loss this isn’t

3



a problem, as the correct target distribution P̂tr(y|x) is induced in expectation, as shown below:

L(✓,Dtrn) = Ep̂tr(x)

⇥
�

KX

c=1

EP̂tr(y|x)[I(y = !c)] ln P(ŷ = !c|x;✓)
⇤

= Ep̂tr(x)

h
�

KX

c=1

P̂tr(y = !c|x) ln P(ŷ = !c|x;✓)
i

= Ep̂tr(x)

h
KL

⇥
P̂tr(y|x)||P(y|x;✓)

⇤i
+ const

= Ep̂tr(x)

h
KL

⇥
⇡tr||⇡̂

⇤i
+ const

(5)

Unfortunately, training models which are a (higher-order) distribution over predictive distributions

based on samples from the (lower-order) predictive distribution is more challenging. The solution
to this problem proposed in the original work on Prior Networks [16] was to minimize the forward

KL-divergence between the model and a target Dirichlet distribution p(⇡|�(c)):

LKL(y,x,✓;�) =
KX

c=1

I(y = !c) · KL[p(⇡|�(c))||p(⇡|x;✓)] (6)

The target concentration parameters �(c) depend on the class c and are set manually as follows:

�(c)
k =

n
� + 1 if c = k
1 if c 6= k (7)

where � is a hyper-parameter which is set by hand, rather than learned from the data. This criterion
is jointly optimized on in-domain and out-of-domain data Dtrn and Dout as follows:

L(✓,D;�in,�out, �) =LKL
in (✓,Dtrn;�in) + � · LKL

out (✓,Dout;�out) (8)
where � is the out-of-distribution loss weight. In-domain �in should take on a large value, for
example 1e2, so that the concentration is high only in the corner corresponding to the target class, and
low elsewhere. Note, the concentration parameters have to be strictly positive, so it is not possible to
set the rest of the concentration parameters to 0. Instead, they are set to one, which also provides a
small degree smoothing. Out-of-domain �out = 0, which results in a flat Dirichlet distribution.

However, there is a significant issue with this criterion. Consider taking the expectation of equation 6
with respect to the empirical distribution p̂tr(x, y) = {x(i), y(i)}Ni=1 = Dtrn:

LKL(✓,Dtrn;�) = Ep̂tr(x,y)

h KX

c=1

I(y = !c) · KL[p(⇡|�(c))||p(⇡|x;✓)]
i

= Ep̂tr(x)

h
KL

⇥ KX

c=1

P̂tr(y = !c|x)p(⇡|�(c))||p(⇡|x;✓)
⇤i

+ const

(9)

In expectation this loss induces a target distribution which is a mixture of Dirichlet distributions

that has a mode in each corner of the simplex, as shown in figure 2:a. When the level of data

uncertainty is low, this is not a problem, as there will only be a single significant mode. However,
the target distribution will be multi-modal when there is a significant amount of data uncertainty.
As the forward KL-divergence is zero-avoiding, it will drive the model to spread itself over each
mode, effectively ’inverting’ the Dirichlet distribution and forcing the precision ↵̂0 to a low value, as
depicted in figure 2:b. This is an undesirable behaviour and can compromise predictive performance.
Rather, as previously stated, in regions of significant data uncertainty the model should yield a
distribution with a single high-precision mode at the center of the simplex, as shown in figure 1:b.

The main issue with the forward KL-divergence loss is that it induces an arithmetic mixture of
target distributions p(⇡|�(c)) in expectation. This can be avoided by instead considering the reverse

KL-divergence between the target distribution p(⇡|�(c)) and the model:

LRKL(y,x,✓;�) =
KX

c=1

I(y = !c) · KL[p(⇡|x;✓)||p(⇡|�(c))] (10)
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(a) Induced Target (b) Actual behaviour

Figure 2: Induced target and predicted Dirichlet distribution when trained with equation 6

The expectation of this criterion with respect to the empirical distribution induces a geometric mixture

of target Dirichlet distributions:

LRKL(✓,Dtrn;�) = Ep̂tr(x)

h KX

c=1

P̂tr(y = !c|x)KL
⇥
p(⇡|x;✓)||p(⇡|�(c))

⇤i

= Ep̂tr(x)

h
Ep(⇡|x;✓)

⇥
ln p(⇡|x;✓)� ln

KY

c=1
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⇤i

= Ep̂tr(x)

h
KL

⇥
p(⇡|x;✓)||p(⇡|�̄)

⇤i
+ const

�̄ =
KX

c=1

P̂tr(y = !c|x) · �(c)

(11)

A geometric mixture of Dirichlet distributions results in a standard Dirichlet distribution whose
concentration parameters �̄ are an arithmetic mixture of the target concentration parameters for each
class. Thus, this loss induces a target distribution which is always a standard uni-modal Dirichlet with
a mode at the point on the simplex which reflects the correct level of data uncertainty (figure 1a-b).
Furthermore, as a consequence using of this loss in equation 8 instead of the forward KL-divergence,
the concentration parameters are appropriately interpolated on the boundary of the in-domain and
out-of-distribution regions, where the degree of interpolation depends on the OOD loss weight �.
Further analysis of the properties of the reverse KL-divergence loss is provided in appendix A.

Finally, it is important to emphasize that this discussion is about what target distribution is induced

in expectation when training models which parameterize a distribution over output distributions

using samples from the output distribution. It is necessary to stress that if either the parameters of, or
samples from, the correct target distribution over output distributions are available, for every input,
then forward KL-divergence is a sensible training criterion.

4 Experiments on Synthetic Data

The previous section investigated the theoretical properties of forward and reverse KL-divergence
training criteria for Prior Networks. In this section these criteria are assessed empirically by using
them to train Prior Networks on the artificial high-uncertainty 3-class dataset4 introduced in [16].
In these experiments, the out-of-distribution training data Dout was sampled such that it forms a
thin shell around the training data. The target concentration parameters �(c) were constructed as
described in equation 7, with �in = 1e2 and �out = 0. The in-domain loss and out-of-distribution
losses were equally weighted (� = 1).

Figure 3 depicts the total uncertainty, expected data uncertainty and mutual information, which is
a measure of knowledge uncertainty, derived using equation 4 from Prior Networks trained using
both criteria. By comparing figures 3a and 3d it is clear that a Prior Network trained using forward

KL-divergence over-estimates total uncertainty in domain, as the total uncertainty is equally high
along the decision boundaries, in the region of class overlap and out-of-domain. The Prior Network
trained using the reverse KL-divergence, on the other hand, yields an estimate of total uncertainty

which better reflects the structure of the dataset. Figure 3b shows that the expected data uncertainty

is altogether incorrectly estimated by the Prior Network trained via forward KL-divergence, as
4Described in appendix B.
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(a) Total Uncertainty - KL (b) Data Uncertainty - KL (c) Mutual Information - KL

(d) Total Uncertainty - RKL (e) Data Uncertainty - RKL (f) Mutual Information - RKL

Figure 3: Comparison of measures of uncertainty derived from Prior Networks trained with forward

and reverse KL-divergence. Measures of uncertainty are derived via equation 4.

it is uniform over the entire in-domain region. As a result, the mutual information is higher in-
domain along the decision boundaries than out-of-domain. In contrast, figures 3c and 3f show that
the measures of uncertainty provided by a Prior Network trained using the reverse KL-divergence
decompose correctly - data uncertainty is highest in regions of class overlap while mutual information
is low in-domain and high out-of-domain. Thus, these experiments support the analysis in the previous
section, and illustrate how the reverse KL-divergence is the more suitable optimization criterion.

5 Image Classification Experiments

Having evaluated the forward and reverse KL-divergence losses on a synthetic dataset in the previous
section, we now evaluate these losses on a range of image classification datasets. The training
configurations are described in appendix C. Table 1 presents the classification error rates of standard
DNNs, an ensemble of 5 DNNs [13], and Prior Networks trained using both the forward and reverse

KL-divergence losses. From table 1 it is clear that Prior Networks trained using forward KL-
divergence (PN-KL) achieve increasingly worse classification performance as the datasets become
more complex and have a larger number of classes. At the same time, Prior Networks trained using
the reverse KL-divergence loss (PN-RKL) have similar error rates as ensembles and standard DNNs.
Note that in these experiments no auxiliary losses were used.5

Table 1: Mean classification performance (% Error) ±2� across 5 random initializations.

Dataset DNN PN-KL PN-RKL ENSM

MNIST 0.5 ±0.1 0.6 ±0.1 0.5 ±0.1 0.5 ± NA

SVHN 4.3 ±0.3 5.7 ±0.2 4.2 ±0.2 3.3 ± NA

CIFAR-10 8.0 ±0.4 14.7 ±0.4 7.5 ±0.3 6.6 ± NA

CIFAR-100 30.4 ±0.6 - 28.1 ±0.2 26.9 ± NA

TinyImageNet 41.7 ±0.4 - 40.3 ±0.4 36.9 ± NA

5An on-going PyTorch re-implementation of this paper, along updated results, is available at
https://github.com/KaosEngineer/PriorNetworks
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Table 2 presents the out-of-distribution detection performance of Prior Networks trained on CIFAR-10
and CIFAR-100 [30] using the forward and reverse KL-divergences. Prior Networks trained on
CIFAR-10 use CIFAR-100 are OOD training data, while Prior Networks trained on CIFAR-100
use TinyImageNet [31] as OOD training data. Performance is assessed using area under an ROC
curve (AUROC) in the same fashion as in [16, 11]. The results on CIFAR-10 show that PN-RKL
consistently yields better performance than PN-KL and the ensemble on all OOD test datasets (SVHN,
LSUN and TinyImagenet). The results using model trained on CIFAR-100 show that Prior Networks
are capable of out-performing the ensembles when evaluated against the LSUN and SVHN datasets.
However, Prior Networks have difficulty distinguishing between the CIFAR-10 and CIFAR-100 test
sets. However, this represents a limitation of the both the classification model and the OOD training
data, rather than the training criterion. Improving classification performance of Prior Networks on
CIFAR-100, which improves understanding of what is ’in-domain’, and using a more appropriate
OOD training dataset, which provides a better contrast, is likely improve OOD detection performance.

Table 2: Out-of-domain detection results (mean % AUROC ±2� across 5 rand. inits) using mutual
information (eqn. 4) derived from models trained on CIFAR-10 and CIFAR-100.

Model CIFAR-10 CIFAR-100
SVHN LSUN TinyImageNet SVHN LSUN CIFAR-10

ENSM 89.5 ± NA 93.2 ± NA 90.3 ± NA 78.9 ± NA 85.6 ± NA 76.5 ± NA

PN-KL 97.8 ±1.1. 91.6 ±1.7 92.4 ±0.9 - - -
PN-RKL 98.2 ±1.1 95.7 ±0.9 95.7 ±0.7 84.8 ±0.8 100.0 ±0.0 57.8 ±0.4

6 Adversarial Attack Detection

The previous section has discussed the use of the reverse KL-divergence training criterion for training
Prior Networks. Here, we show that the proposed loss also offers a generalization of adversarial
training [17, 25] which allows Prior Networks to be both more robust to adversarial attacks and

detect them as OOD samples. The use of measures of uncertainty for adversarial attack detection was
previously studied in [14], where it was shown that Monte-Carlo dropout ensembles yield measures of
uncertainty which are more challenging to attack than other considered methods. In a similar fashion
to Monte-Carlo dropout, Prior Networks yield rich measures of uncertainty derived from distributions
over distributions. For Prior Networks this means that for an adversarial attack to both affect the
prediction and evade detection, it must satisfy several criteria. Firstly, the adversarial input must
be located in a region of input space classified as the desired class. Secondly, the adversarial input
must be in a region of input space where both the relative and absolute magnitudes of the model’s
logits ẑ, and therefore all the measures of uncertainty derivable from the predicted distribution over
distribution, are the same as for the natural input, making it challenging to distinguish between the
natural and adversarial input. Clearly, this places more constraints on the space of solutions for
successful adversarial attacks than detection based on the confidence of the prediction, which places
a constraint only on the relative value of just a single logit.

(a) Natural Target (b) Adversarial Target

Figure 4: Target Dirichlet distributions for natural and adversarial inputs.

Using the greater degree of control over the behaviour of Prior Networks which the reverse KL-
divergence loss affords, Prior Networks can be explicitly trained to yield high uncertainty for example
adversarial attacks, further constraining the space of successful solutions. Here, adversarially
perturbed inputs are used as the out-of-distribution training data for which the Prior Network is
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trained to both yield the correct prediction and high measures of uncertainty. Thus, the Prior Network
is jointly trained to yield either a sharp or wide Dirichlet distribution at the appropriate corner of the
simplex for natural or adversarial data, respectively, as described in figure 4.

L(✓,D;�in,�adv, �) =LRKL
in (✓,Dtrn;�in) + � · LRKL

adv (✓,Dadv;�adv) (12)

The target concentration parameters are set using equation 7, where �in = 1e2 for natural and
�adv = 1 for adversarial data, for example. This approach can be seen as a generalization of
adversarial training [17, 25]. The difference is that here we are training the model to yield a
particular behaviour of an entire distribution over output distributions, rather than simply making
sure that the decision boundaries are correct in regions of input space which correspond to adversarial
attacks. Furthermore, it is important to highlight that this generalized form of adversarial training is a
drop-in replacement for standard adversarial training which only requires changing the loss function.

(a) C10 Whitebox Success Rate (b) C10 Whitebox AUROC (c) C10 Whitebox JSR

(d) C100 Whitebox Success Rate (e) C100 Whitebox ROC AUC (f) C100 Whitebox JSR

(g) PN Blackbox Success Rate (h) PN Blackbox AUROC (i) PN Blacbox JSR

Figure 5: Adaptive Attack detection performance in terms of mean Success Rate, % AUROC and
Joint Success Rate (JSR) across 5 random inits. L1 bound on adversarial perturbation is 30 pixels.

As discussed in [14, 32], approaches to detecting adversarial attacks need to be evaluated against the
strongest possible attacks - adaptive whitebox attacks which have full knowledge of the detection
scheme and actively seek to bypass it. Here, targeted iterative PGD-MIM [20, 25] attacks are used
for evaluation and simple targeted FGSM [17] are used during training. The goal is to switch the
prediction to a target class but leave measures of uncertainty derived from the model unchanged.

Two forms of criteria, expressed in equation 13, are used to generate the adversarial sample, x̃. For
both criteria the target for the attacks is set to the second most likely class, as this should yield the least
’unnatural’ perturbation of the outputs. The first approach involves permuting the model’s predictive
distribution over class labels ⇡̂ and minimizing the forward KL-divergence between ⇡̂ and the target
permuted distribution ⇡adv. This ensures that the target class is predicted, but places constraints
only the relative values of the logits, and therefore only on measures of uncertainty derived from the
predictive posterior. The second approach involves permuting the concentration parameters ↵̂ and
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minimizing the forward KL divergence to the permuted target Dirichlet distribution padv(⇡). This
places constraints on both the relative and absolute values of the logits, and therefore on measures of
uncertainty derived from the entire distribution over distributions.

LKL
PMF

�
P(y|x̃; ✓̂), t

�
=KL[⇡adv||⇡̂], LKL

DIR

�
p(⇡|x̃; ✓̂), t

�
= KL[padv(⇡)||p(⇡|x̃; ✓̂)] (13)

Though LKL
DIR has more explicit constraints, it was found to be more challenging to optimize and

yield less aggressive attacks than LKL
PMF . 6 Thus, only attacks generated via LKL

PMF are considered.

In the following set of experiments Prior Networks are trained on either the CIFAR-10 or CIFAR-100
datasets [30] using the procedure discussed above and detailed in appendixC. The baseline models are
an undefended DNN and a DNN trained using standard adversarial training (DNN-ADV). For these
models uncertainty is estimated via the entropy of the predictive posterior. Additionally, estimates
of mutual information (knowledge uncertainty) are derived via a Monte-Carlo dropout ensemble
generated from each of these models. Similarly, Prior Networks also use the mutual information
(eqn. 4) for adversarial attack detection. Performance is assessed via the Success Rate, AUROC and
Joint Success Rate (JSR). For the ROC curves considered here the true positive rate is computed using
natural examples, while the false-positive rate is computed using only successful adversarial attacks7.
The JSR, described in greater detail in appendix D, is the equal error rate where false positive rate
equals false negative rate, and allows joint assessment of adversarial robustness and detection.

The results presented in figure 5 show that on both the CIFAR-10 and CIFAR-100 datasets whitebox
attacks successfully change the prediction of DNN and DNN-ADV models to the second most likely
class and evade detection (AUROC goes to 50). Monte-Carlo dropout ensembles are marginally
harder to adversarially overcome, due to the random noise. At the same time, it takes far more
iterations of gradient descent to successfully attack Prior Networks such that they fail to detect the
attack. On CIFAR-10 the Joint Success Rate is only 0.25 at 1000 iterations, while the JSR for the
other models is 0.5 (the maximum). Results on the more challenging CIFAR-100 dataset show
that adversarially trained Prior Networks yield a more modest increase in robustness over baseline
approaches, but it still takes significantly more computational effort to attack the model. Thus,
these results support the assertion that adversarially trained Prior Networks constrain the solution
space for adaptive adversarial attack, making them computationally more difficult to successfully
construct. At the same time, blackbox attacks, computed on identical networks trained on the same
data from a different random initialization, fail entirely against Prior Networks trained on CIFAR-10
and CIFAR-100. This shows that the adaptive attacks considered here are non-transferable.

7 Conclusion

Prior Networks have been shown to be an interesting approach to deriving rich and interpretable
measures of uncertainty from neural networks. This work consists of two contributions which aim to
improve these models. Firstly, a new training criterion for Prior Networks, the reverse KL-divergence
between Dirichlet distributions, is proposed. It is shown, both theoretically and empirically, that
this criterion yields the desired set of behaviours of a Prior Network and allows these models to be
trained on more complex datasets with arbitrary numbers of classes. Furthermore, it is shown that this
loss improves out-of-distribution detection performance on the CIFAR-10 and CIFAR-100 datasets
relative to the forward KL-divergence loss used in [16]. However, it is necessary to investigate
proper choice of out-of-distribution training data, as an inappropriate choice can limit OOD detection
performance on complex datasets. Secondly, this improved training criterion enables Prior Networks
to be applied to the task of detecting whitebox adaptive adversarial attacks. Specifically, adversarial
training of Prior Networks can be seen as both a generalization of, and a drop in replacement for,
standard adversarial training which improves robustness to adversarial attacks and the ability to detect
them by placing more constraints on the space of solutions to the optimization problem which yields
adversarial attacks. It is shown that it is significantly more computationally challenging to construct
successfully adaptive whitebox PGD attacks against Prior Network than against baseline models. It
is necessary to point out that the evaluation of adversarial attack detection using Prior Networks is
limited to only strong L1 attacks. It is of interest to assess how well Prior Networks are able to
detect adaptive C&W L2 attacks [21] and EAD L1 attacks [33].

6Results are described in appendix E.
7The may result in minimum AUROC performance being a little greater than 50 is the success rate is not 100

%, as is the case with MCDP AUROC in figure 5.
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