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Abstract

We argue that regularizing terms in standard regression methods not only help
against overfitting finite data, but sometimes also help in getting better causal
models. We first consider a multi-dimensional variable linearly influencing a
target variable with some multi-dimensional unobserved common cause, where
the confounding effect can be decreased by keeping the penalizing term in Ridge
and Lasso regression even in the population limit. The reason is a close analogy
between overfitting and confounding observed for our toy model. In the case of
overfitting, we can choose regularization constants via cross validation, but here we
choose the regularization constant by first estimating the strength of confounding,
which yielded reasonable results for simulated and real data. Further, we show
a ‘causal generalization bound’ which states (subject to our particular model of
confounding) that the error made by interpreting any non-linear regression as
causal model can be bounded from above whenever functions are taken from a not
too rich class.

1 Introduction

Predicting a scalar target variable Y from a d-dimensional predictor X := (X1, . . . , Xd) via appro-
priate regression models is among the classical problems of machine learning [1]. In the standard
supervised learning scenario, some finite number of observations, independently drawn from an un-
known but fixed joint distribution PY,X, are used for inferring Y -values corresponding to unlabelled
X-values. To solve this task, regularization is known to be crucial for obtaining regression models
that generalize well from training to test data [2]. Deciding whether such a regression model admits a
causal interpretation is, however, challenging. Even if causal influence from Y to X can be excluded
(e.g. by time order), the statistical relation between X and Y cannot necessarily be attributed to the
influence of X on Y . Instead, it could be due to possible common causes, also called ‘confounders’.
For the case where common causes are known and observed, there is a huge number of techniques to
infer the causal influence1, e.g., [3], addressing different challenges, for instance, high dimensional
confounders [4] or the case where some variables other than the common causes are observed [5],
just to mention a few of them. If common causes are not known, the task of inferring the influence
of X on Y gets incredibly hard. Given observations from any further variables other than X and Y ,
conditional independences may help to detect or disprove the existence of common causes [5], and
so-called instrumental variables may admit the identification of causal influence [6].

Here we consider the case where only observations from X and Y are given. In this case, naively
interpreting the regression model as causal model is a natural baseline. We show that strong
regularization increases the chances that the regression model contains some causal truth. We
are aware of the risk that this result could be mistaken as a justification to ignore the hardness of the
problem and blindly infer causal models by strong regularization. Our goal is, instead, to inspire a

1often for d = 1 and with a binary treatment variable X
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discussion on to what extent causal modelling should regularize even in the infinite sample limit due
to some analogies between generalizing across samples from the same distribution and ‘generalizing’
from observational to interventional distributions, which appear in our models of confounding, while
they need not apply to other confounding scenarios. The idea is not entirely novel since it is tightly
linked to several ideas that are ‘floating around’ in the machine learning community for a while.
It is believed (and can be proven subject to appropriate model assumptions) that finding statistical
models that generalize well across different background conditions is closely linked to finding causal
models [7, 8, 9, 10].2 It is then natural to also believe that generalizing across different environment is
related to generalizing across different samples. Accordingly, [12] describes regularization techniques
for linear regression that help generalizing across certain shift perturbations. Here we describe a
scenario for which the analogy between ‘regularizing against overfitting’ and ‘regularizing against
confounding’ gets as tight as possible in the sense that the same regularization helps for both purposes.
Due to this theoretical focus, we prefer to work with the simplest non-trivial scenario rather than
looking for the most relevant or most realistic case.

Scenario 1: inferring a linear statistical model To explain the idea, we consider a linear statistical
relation between X and Y :

Y = Xa + E, (1)

where a is a column vector in Rd and E is an uncorrelated unobserved noise variable, i.e., ΣXE = 0.
Let Ŷ denote the column vector of centred renormalized observations yi of Y , i.e., with entries
(yi − 1

n

∑n
i=1 y

i)/
√
n− 1, and similarly, Ê denotes the centred renormalized values of E. Likewise,

let X̂ denote the n× d matrix whose j-th column contains the centred renormalized observations
from Xj . Let, further, X̂−1 denote its (Moore-Penrose) pseudoinverse. To avoid overfitting, the least
ordinary squares estimator3

â := argmina′‖Ŷ − X̂a′‖2 = X̂−1Ŷ = a + X̂−1Ê, (2)

is replaced with the Ridge and Lasso estimators

âridgeλ := argmina′{λ‖a′‖22 + ‖Ŷ − X̂a′‖2} (3)

âlassoλ := argmina′{λ‖a′‖1 + ‖Ŷ − X̂a′‖2}, (4)

where λ is a regularization parameter [13].

So far we have only described the standard scenario of inferring properties of the conditional PY |X
from finite observations X̂, Ŷ without any causal semantics.

Scenario 2: inferring a linear causal model We now modify the scenario in three respects. First,
we assume that E and X in (1) correlate due to some unobserved common cause. Second, we
interpret (1) in a causal way in the sense that setting X to x lets Y being distributed according to
xa + E. Using Pearl’s do-notation (a crucial concept for formalizing causality) [5], this can be
phrased as

Y |do(X=x) = xa + E 6= Y |X=x, (5)

where we don’t have equality because E needs to be replaced with E|X=x for the observational
conditional. Third, we assume the infinite sample limit where PX,Y is known. We still want to infer
the vector a because we are interested in causal statements but regressing Y on X yields â instead
which describes the observational conditional on the right hand side of (5).

Conceptually, Scenario 1 and 2 deal with two entirely different problems: inferring PY |X=x from
finite samples (X̂, Ŷ ) versus inferring the interventional conditional PY |do(X=x) from the observa-
tional distribution PY,X. Nevertheless both problems amount to inferring the vector a and for both
scenarios, the error term X̂−1Ê causes failure of ordinary least squares regression. Only the reason
why this term is non-zero differs: in the first scenario it is a finite sample effect, while it results from
confounding in the second one. The idea of the present paper is simply that standard regularization

2After submission I became aware of a preprint with the same title as mine, [11] where regularizers are
constructed that are tailored particularly for causal features.

3Here we have, for simplicity, assumed n > d.
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Figure 1: Left: In scenario 1, the empirical correlations between X and E are only finite sample
effects. Right: In scenario 2, X and E are correlated due to their common cause Z. We sample the
structural parameters M and c from distributions in a way that entails a simple analogy between
scenario 1 and 2.

techniques do not care about the origin of this error term. Therefore, they can temper the impact of
confounding in the same way as they help avoiding to overfit finite data.

The paper is structured as follows. Section 2 fleshes out scenarios 1 and 2 in a way that entails
that the regression error follows the same distributions. Section 3 proposes a way to determine
the regularization parameter in scenario 2 by estimating the strength of confounding via a method
proposed by [14]. Section 4 describes some empirical results. Section 5 describes a modified statistical
learning theory that states that regression models from not too rich function classes ‘generalize’ from
statistical to causal statements.

2 Analogy between overfitting and confounding

The reason why our scenario 2 only considers the infinite sample limit of confounding is that mixing
finite sample and confounding significantly complicates the theoretical results. The supplement
sketches the complications of this case. For a concise description of the population case, we
consider the Hilbert spaceH of centred random variables (on some probability space without further
specification) with finite variance. The inner product is given by the covariance, e.g.,

〈Xi, Xj〉 := cov(Xi, Xj). (6)

Accordingly, we can interpret X as an operator4 Rd → H via (b1, . . . , bd) 7→
∑
j bjXj . Then the

population version of (2) reads

ã = argmina′{‖Y −Xa′‖2} = X−1Y = a + X−1E, (7)

where the square length is induced by the inner product (6), i.e., it is simply the variance. Extending
the previous notation, X−1 now denotes the pseudoinverse of the operator X [15]. To see that X−1E
is only non-zero when X and E are correlated it is helpful to rewrite it as

X−1E = Σ−1XXΣXE , (8)

where we have assumed ΣXX to be invertible (see supplement for a proof). One can easily show
that the empirical covariance matrix Σ̂XE causing the overfitting error is distributed according to
N (0, Σ̂XXσ

2
E/n).5

To get the desired analogy between scenarios 1 and 2, we just need a generating model for confounders
for which ΣXE is distributed according to N (0, γΣXX) for some parameter γ. The independent
source model for confounding described in [14] turned out to satisfy this requirement after some
further specification.

Generating model for scenario 1 The following procedure generates samples according to the
DAG in Figure 1, left:

4Readers not familiar with operator theory may read all our operators as matrices with huge n without loosing
any essential insights – except for the cost of having to interpret all equalities as approximate equalities. To
facilitate this way of reading, we will use (·)T also for the adjoint of operators in H although (·)∗ or (·)† is
common.

5E ∼ N (0, σ2
E) and thus ej ∼ N (0, 1/n), which implies Ê ∼ N (0, I/n) and thus Σ̂XE = X̂T Ê ∼

N (0, X̂T X̂σ2
E/n) = N (0, Σ̂XXσ

2
E/n).
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1. Draw n observations from (X1, . . . , Xd) independently from PX
2. Draw samples of E independently from PE
3. Draw the vector a of structure coefficients from some distribution Pa

4. Set Ŷ := X̂a + Ê.

Generating model for scenario 2 To generate random variables according to the DAG in Figure 1,
right, we assume that both variables X and E are generated from the same set of independent sources
by applying a random mixing matrix or a random mixing vector, respectively:

Given an `-dimensional random vector Z of sources with distribution N (0, I).

1 . Choose an `× d mixing matrix M
and set X := ZM .

2. Draw c ∈ R` from some distribution Pc and set E := Zc.
3. Draw the vector a of structure coefficients from some distribution Pa

4. Set Y := Xa + E.

We then obtain:
Theorem 1 (population and empirical covariances). Let the number ` of sources in scenario 2 be
equal to the number n of samples in scenario 1 and PM coincide with the distribution of sample
matrices X̂ induced by PX. Let, moreover, Pc in scenario 2 coincide with the distribution of Ê
induced by PE in scenario 1, and Pa be the same in both scenarios. Then the joint distribution
of a,ΣXX,ΣXY ,ΣXE in scenario 2 coincides with the joint distribution of a, Σ̂XX, Σ̂XY , Σ̂XE in
scenario 1.

Proof. We have Σ̂XX = X̂T X̂ and ΣXX = XTX = MTZTZM = MTM , where we have used
that Z has full rank due to the uncorrelatedness of its components. Likewise, Σ̂XE = X̂T Ê and
ΣXE = (ZM)TZc = MT c. Further, Σ̂XY = X̂T X̂a + Σ̂XE and ΣXY = XTXa + ΣXE . Then
the statement follows from the correspondences M ≡ X̂, c ≡ Ê, a ≡ a.

Theorem 1 provides a canonical way to transfer any Bayesian approach to inferring a from Σ̂XX, Σ̂XY

in scenario 1 to inferring a from ΣXX,ΣXY in scenario 2. It is known [16], for instance, that (3) and
(4) maximize the posterior p(a|X̂, Ŷ ) for the priors

pridge(a) ∼ exp

(
− 1

2τ2
‖a‖2

)
plasso(a) ∼ exp

(
− 1

2τ2
‖a‖1

)
, (9)

respectively, if E ∼ N (0, σ2
E) and λ = σ2

E/τ
2. Some algebra shows that the only information

from X̂ and Ŷ that matters is given by Σ̂XX and Σ̂XY , see supplement. Therefore, (3) and (4)
also maximize the posterior p(a|Σ̂XX, Σ̂XY ) and, employing Theorem 1, the population versions of
Ridge and Lasso

ãridgeλ := argmina′{λ‖a′‖22 + ‖Y −Xa′‖2} (10)

ãlassoλ := argmina′{λ‖a′‖1 + ‖Y −Xa′‖2}, (11)

maximize p(a|ΣXX,ΣXY ) after substituting all the priors accordingly.

These population versions, however, make it apparent that we now face the problem that selecting λ
by cross-validation would be pointless since λ = 0 had the best cross sample performance. Instead,
we would need to know the strength of confounding to choose the optimal λ.

3 Choosing the regularization constant by estimating confounding

The only approaches that directly estimate the strength of confounding6 from PX,Y alone we are
aware of are given by [19, 14]. The first paper considers only one-dimensional confounders, which is
complementary to our confounding scenario, while we will use the approach from the second paper

6[17] constructs confounders for linear non-Gaussian models and [18] infer confounders of univariate X,Y
subject to the additive noise assumption.
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because it perfectly matches our scenario 2 in Section 2 with fixed M . [14] use the slightly stronger
assumption that a and c are drawn from N (0, σ2

aI) and N (0, σ2
cI), respectively. We briefly rephrase

the method. Using ã in (7) (i.e. the population version of the ordinary least squares solution), they
define confounding strength by

β :=
‖ã− a‖2

‖ã− a‖2 + ‖a‖2
∈ [0, 1]. (12)

It attains 0 iff ã coincides with a and 1 iff a = 0 and the correlations between X and Y are entirely
caused by confounding.

The idea to estimate β is that the unregularized regression vector follows the distribution N (0, σ2
aI +

σ2
cM
−1M−T ). This results from

ã = a +X−1E = a +M−1c,

(see proof of Theorem 1 in [14]). Then the quotient σ2
c/σ

2
a can be inferred from the direction of â

(intuitively: the more â concentrates in small eigenvalue eigenspaces of ΣXX = MTM , the larger is
this quotient). Using some approximations that hold for large d, β can be estimated from (ΣXX, ã).
Further, the approximation ‖ã−a‖2 + ‖a‖2 ≈ ‖ã‖2 from [19] yields ‖a‖2 ≈ (1−β) · ‖ã‖2. Hence,
the length of the true causal regression vector a can be estimated from the length of ã. This way, we
can adjust λ such that ‖âλ‖ coincides with the estimated length. Since the estimation is based on
a Gaussian (and not a Laplacian) prior for a, it seems more appropriate to combine it with Ridge
regression than with Lasso. However, due to known advantages of Lasso7 (e.g. that sparse solutions
yield more interpretable results), we also use Lasso. After all, the qualitative statement that strong
confounding amounts to vectors â that tend to concentrate in low eigenvalue subspaces of ΣXX still
holds true as long as c is still chosen from an isotropic prior.

Confounding estimation via the algorithm of [14] requires the problematic decision of whether the
variables Xj should be rescaled to variance 1. If different Xj refer to different units, there is no other
straightforward choice of the scale. It is not recommended, however, to always normalize Xj . If
ΣXX is diagonal, for instance, the method would be entirely spoiled by normalization. The difficulty
of deciding whether data should be renormalizing beforehand will be inherited by our algorithm.

Our confounder correction algorithm reads:

Algorithm ConCorr
1: Input: i.i.d. samples from P (X, Y ).
2: Rescale Xj to variance 1 if desired.
3: Compute the empirical covariance matrices Σ̂XX and Σ̂XY

4: Compute the ordinary least squares regression vector â := Σ̂XX

−1
Σ̂XY

5: Compute an estimator β̂ for the confounding strength β via the algorithm in [14] from Σ̂XX and
â and estimate the squared length of a via

‖a‖2 ≈ (1− β̂)‖â‖2 (13)

6: find λ such that the squared length of âridge/lassoλ coincides with the square root of the right
hand side of (13).

7: Compute Ridge or Lasso regression model using this value of λ.
8: Output: Regularized regression vectors âridge/lassoλ .

4 Experiments

4.1 Simulated data

For some fixed values of d = ` = 30, we generate one mixing matrix M in each run by drawing its
entries from the standard normal distribution. In each run we generate n = 1000 instances of the

7[20] claims, for instance, “If `2 was the norm of the 20th century, then `1 is the norm of the 21st century ...
OK, maybe that statement is a bit dramatic, but at least so far, there’s been a frenzy of research involving the `1
norm and its sparsity-inducing properties....”
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Figure 2: From left to right: RSE versus unregularized RSE (that is, ordinary least square regression)
for Concorr with Ridge, standard cross-validated Ridge (top, left and right, respectively), and
ConCorr with Lasso, standard cross-validaded Lasso (bottom, left and right, respectively) for 100
runs (each point representing one run).

`-dimensional standard normal random vector Z and compute the X values by X = ZM . Afterwards
we draw the entries of c and a from N (0, σ2

c ) and N (0, σ2
a), respectively, after choosing σa and σc

from the uniform distribution on [0, 1]. Finally, we compute the values of Y via Y = Xa + Zc +E,
where E is random noise drawn from N (0, σ2

E) (the parameter σE has previously been chosen
uniformly at random from [0, 5], which yields quite noisy data). While such a noise term didn’t exist
in our description of scenario 2, we add it here to also study finite sample effects (without noise, Y
depends deterministically on X for ` ≤ d).

To assess whether the output âλ is close to a we define the relative squared error (RSE) of any
regression vector a′ by

εa′ :=
‖a′ − a‖2

‖a′ − a‖2 + ‖a‖2
∈ [0, 1]

This definition is convenient because it yields the confounding strength β for the special case where
a′ is the ordinary least squares regression vector ã.

Figure 2 shows the results. The red and green lines show two different baselines: first, the unregular-
ized error, and second, the error 1/2 obtained by the trivial regression vector 0. The goal is to stay
below both baselines. Apart from those two trivial baselines, another natural baseline is regularized
regression where λ is chosen by cross-validation, because this would be the default approach for the
unconfounded case. We have used leave-one-out CV from the Python package scikit for Ridge
and Lasso, respectively.

ConCorr clearly outperforms cross-validation (for both Ridge and Lasso), which shows that cross-
validation regularizes too weakly for causal modelling, as expected. One should add, however, that
we increased the number of iterations in the λ-optimization to get closer to optimal leave-one-out
performance since the default parameters of scikit already resulted in regularizing more strongly
than that (Note that the goal of this paper is not to show that ConCorr outperforms other methods.
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Figure 3: Results for Ridge (left) and Lasso (right) regression for the data from the optical device.

X Y ′ Y = Y ′ + Zc

Z

Figure 4: Confounding where Z influences Y in a linear additive way, while the influence on X is
arbitrary.

Instead, we want to argue that for causal models it is often recommended to regularize more strongly
than criteria of statistical predictability suggests. If ‘early stopping’ in common CV algorithms also
yields stronger regularization,8 this can be equally helpful for causal inference, although the way
ConCorr choses λ is less arbitrary than just bounding the number of iterations).

Results for other dimensions were qualitatively comparable if d and ` were above 10 with slow
improvement for larger dimensions, but note that the relevance of simulations should not be overes-
timated since inferring confounding critically depends on the distribution of eigenvalues of ΣXX,
which is domain dependent in practical applications.

4.2 Real data

In absence of better data sets with known ground truth, we considered two sets used in [14], where
ground truth was assumed to be known up to some uncertainty discussed there.

Optical device Here, a Laptop shows an image with extremely low resolution (in their case 3× 3-
pixel9) captured from a webcam. In front of the screen they mounted a photodiode measuring the
light intensity Y , which is mainly influenced by the pixel vector X of the image.

The confounder W is a random voltage controlling two LEDs, one in front of the webcam (and
thus influencing X) and the second one in front of the photodiode (thus influencing Y ). Since W is
also measured, the vector aX,W obtained by regressing Y on (X,W ) is causal (no confounders by
construction), if one accepts the linearity assumption. Dropping W yielded significant confounding,
with β ranging from 0 to 1. We applied ConCorr to X, Y and compared the output with the ground
truth. Figure 3, left, show the results for Ridge and Lasso. The y-axis is the relative squared error
achieved by ConCorr, while the x-axis is the cross-validated baseline.

The point (0, 0) happened to be met by three cases, where no improvement was possible. One can
see that in 3 out of the remaining nine cases (note that the point (1, 1) is also met by two cases),
ConCorr significantly improved the causal prediction. Fortunately, there is no case where ConCorr
is worse than the baseline.

8See also [21] for regularization by early stopping in a different context.
9In order to avoid overfitting issues, we decided in Ref. [14] to only generate low-dimensional data with d

around 10.

7



Taste of wine This data has been extracted from the UCI machine learning repository [22] for the
experiments in [14]. The cause X contains 11 ingredients of different sorts of red wine and Y is
the taste assigned by human subjects. Regressing Y on X yields a regression vector for which the
ingredient alcohol dominates. Since alcohol strongly correlates with some of the other ingredients,
dropping it amounts to significant confounding (assuming that the correlations between alcohol and
the other ingredients is due to common causes and not due to the influence of alcohol on the others).

After normalizing the ingredients10, ConCorr with Ridge and Lasso yielded a relative error of 0.45
and 0.35, respectively, while [14] computed the confounding strength β ≈ 0.8, which means that
ConCorr significantly corrects for confounding (we confirmed that CV also yielded errors close to
0.8 which suggests that finite sample effects did not matter for the error).

Although one-dimensional confounding heavily violates our model assumptions, the results of both
real data experiments look somehow positive.

5 Causal learning theory

So far, we have supported causal regularization mainly via transferring Bayesian arguments for
regularization from scenario 1 to scenario 2. An alternative perspective on regularization is provided
by statistical learning theory [2]. Generalization bounds guarantee that the expected error is unlikely
to significantly exceed the empirical error for any regression function f from a not too rich class F .
If L(Y, f(X)) denotes some loss function, they guarantee, for instance, that the following inequality
holds with a certain probability uniformly for f ∈ F :

E[L(Y, f(X)] ≤ 1

n

n∑
j=1

L(yi, f(xi)) + C(F),

where C(F) is some ‘capacity term’.

In the same way, as these bounds relate empirical loss with expected loss, we will relate the expected
(statistical) loss above with the interventional loss

Edo(X)[L(Y, f(X)] :=

∫
L(y, f(x))p(y|do(x))p(x)dx, (14)

(which quantifies how well f describes the change of Y for interventions on X) via a causal
generalization bound of the form

Edo(X)[L(Y, f(X)] ≤ E[L(Y, f(X))] + C(F),

for some capacity term C(F). Note that the type of causal learning learning theory developed here
should not be confused with [23], which considers the generalization error of classifiers that infer
cause-effect directions after being trained with multiple data sets of cause-effect pairs.

Figure 4 shows our confounding model that significantly generalizes our previous models. Z and X
are arbitrary random variables of dimensions ` and d, respectively. Apart from the graphical structure,
we only add the parametric assumption that the influence of Z on Y is linear additive:

Y = Y ′ + Zc, (15)

where c ∈ R`. The change of Y caused by setting X to x via interventions is given by Pearl’s
backdoor criterion [5] as

p(y|do(x)) =

∫
p(y|x, z)p(z)dz. (16)

Note that the observational conditional p(y|x) would be given by replacing p(z) with p(z|x) in (16).
Interventional conditionals destroy the dependences between the confounder Z and the ‘treatment’
variable X by definition of an intervention. The supplement shows that the difference between
interventional and observational loss can be concisely phrased in terms of covariances if we choose
the loss L(Y, f(X)) = (Y − f(X))2:
Lemma 1 (interventional minus observational loss). Let g(x) := E[Y ′|x]. Then

Edo(X)[(Y − f(X))2]−E[(Y − f(X))2] = (Σ(f−g)(X)Z)c.
10Note that [14] also used normalization to achieve reasonable estimates of confounding for this case.
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For every single f , the vector Σ(f−g)(X)Z is likely to be almost orthogonal to c if c is randomly
drawn from a rotation invariant distribution in R`. In order to derive statements of this kind that hold
uniformly for all functions from a function class F we introduce the following concept quantifying
the capacity of F :
Definition 1 (correlation dimension). Let F be some class of functions f : Rd → R. Given the
distribution PX,Z, the correlation dimension dcorr of F is the dimension of the span of

{Σf(X)Z |f ∈ F}.

To intuitively understand this concept it is instructive to consider the following immediate bounds:
Lemma 2 (bounds on correlation dimension). The correlation dimension of F is bounded from above
by the dimension of the span of F . Moreover, if F consists of linear functions, another upper bound
is given by the rank of ΣXZ.

In the supplement we show:
Theorem 2 (causal generalization bound). Given the causal structure in Figure 4, where Z is `-
dimensional with covariance matrix ΣZZ = I, influencing X in an arbitrary way. Let the influence
of Z on Y be given by a ‘random linear combination’ of Z with variance V . Explicitly,

Y ′ 7→ Y = Y ′ + Zc,

where c ∈ R` is randomly drawn from the sphere of radius
√
V according to the Haar measure of

O(`). Let F have correlation dimension dcorr and satisfy the bound ‖(f − g)(X)‖H ≤ b for all
f ∈ F (where g(x) := E[Y ′|x]). Then, for any β > 1,

Edo(X)[(Y − f(X))2] ≤ E[(Y − f(X))2] + b ·
√
V · β · dcorr + 1

`
,

holds uniformly for all f ∈ F with probability 1− en(1−β+ln β)/2.

Note that ΣZZ = I can always be achieved by the ‘whitening’ transformation Z 7→ (ΣZZ)−1/2Z.
Normalization is convenient just because it enables a simple way to define a ‘random linear combina-
tion of Z with variance V ’, which would be cumbersome to define otherwise.

Theorem 2 basically says that the interventional loss is with high probability close to the expected
observational loss whenever the number of sources significantly exceeds the correlation dimension.
Note that the confounding effect can nevertheless be large, that is, it would heavily spoil ordinary
least square (e.g. unregularized) regression. Consider, for instance, the case where ` = d and X and
Z are related by X = Z. Let, moreover, Y ′ = Xa for some a ∈ Rd. Then the confounding can have
significant impact on the correlations between Y and X due to Y = X(a + c), whenever c is large
compared to a. However, whenever F has low correlation dimension, the selection of the function f
that optimally fits observational data is not significantly perturbed by the term Xc. This is because
Xc ‘looks like random noise’ since F contains no function that is able to account for ‘such a complex
correlation’. For the simple case where ΣXZ has low rank, for instance, the term Zc almost behaves
like noise for typical c (w.r.t. any class F of linear functions), because the majority of components of
Z are uncorrelated with X, after appropriate basis change.

Since `, dcorr, b in Theorem 2 are unobserved, its value will mostly consist in qualitative insights
rather than providing quantitative bounds of practical use.

6 What do we learn for the general case?

Despite all concerns against our ‘hand-tuned’ confounder model, we want to stimulate a general
discussion about recommending stronger regularization than criteria of statistical predictability
suggest, whenever one is actually interested in causal models. Our theoretical results suggest that
this helps in particular when a type of confounding is expected that – if present – generates complex
dependences, which would strongly regularized regression treat as noise. The advice of limiting the
complexity of models to capture some causal truth could also be relevant for modern deep learning,
since the goal of interpretability of algorithms for classification or other standard tasks could possibly
be improved by having causal features rather than purely predictive ones.

It is, however, by no means intended to suggest that this simple recommendation would solve any of
the hard problems in causal inference.
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