Distribution Learning of a Random Spatial Field with a Location-Unaware Mobile Sensor

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental

Authors

Meera Pai, Animesh Kumar

Abstract

Measurement of spatial fields is of interest in environment monitoring. Recently mobile sensing has been proposed for spatial field reconstruction, which requires a smaller number of sensors when compared to the traditional paradigm of sensing with static sensors. A challenge in mobile sensing is to overcome the location uncertainty of its sensors. While GPS or other localization methods can reduce this uncertainty, we address a more fundamental question: can a location-unaware mobile sensor, recording samples on a directed non-uniform random walk, learn the statistical distribution (as a function of space) of an underlying random process (spatial field)? The answer is in the affirmative for Lipschitz continuous fields, where the accuracy of our distribution-learning method increases with the number of observed field samples (sampling rate). To validate our distribution-learning method, we have created a dataset with 43 experimental trials by measuring sound-level along a fixed path using a location-unaware mobile sound-level meter.