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Abstract

We aim to better understand attention over nodes in graph neural networks (GNNs)
and identify factors influencing its effectiveness. We particularly focus on the ability
of attention GNNs to generalize to larger, more complex or noisy graphs. Motivated
by insights from the work on Graph Isomorphism Networks, we design simple
graph reasoning tasks that allow us to study attention in a controlled environment.
We find that under typical conditions the effect of attention is negligible or even
harmful, but under certain conditions it provides an exceptional gain in performance
of more than 60% in some of our classification tasks. Satisfying these conditions
in practice is challenging and often requires optimal initialization or supervised
training of attention. We propose an alternative recipe and train attention in a
weakly-supervised fashion that approaches the performance of supervised models,
and, compared to unsupervised models, improves results on several synthetic as
well as real datasets. Source code and datasets are available at https://github.
com/bknyaz/graph_attention_pool.

1 Attention meets pooling in graph neural networks

The practical importance of attention in deep learning is well-established and there are many argu-
ments in its favor [1], including interpretability [2, 3]. In graph neural networks (GNNs), attention
can be defined over edges [4, 5] or over nodes [6]. In this work, we focus on the latter, because,
despite being equally important in certain tasks, it is not as thoroughly studied [7]. To begin our
description, we first establish a connection between attention and pooling methods. In convolutional
neural networks (CNNs), pooling methods are generally based on uniformly dividing the regular grid
(such as one-dimensional temporal grid in audio) into local regions and taking a single value from
that region (average, weighted average, max, stochastic, etc.), while attention in CNNs is typically a
separate mechanism that weights C-dimensional input X ∈ RN×C :

Z = α�X, (1)

where Zi = αiXi - output for unit (node in a graph) i,
∑N

i αi = 1, � - element-wise multiplication,
N - the number of units in the input (i.e. number of nodes in a graph).

In GNNs, pooling methods generally follow the same pattern as in CNNs, but the pooling regions
(sets of nodes) are often found based on clustering [8, 9, 10], since there is no grid that can be
uniformly divided into regions in the same way across all examples (graphs) in the dataset. Recently,
top-k pooling [11] was proposed, diverging from other methods: instead of clustering “similar” nodes,
it propagates only part of the input and this part is not uniformly sampled from the input. Top-k
pooling can thus select some local part of the input graph, completely ignoring the rest. For this
reason at first glance it does not appear to be logical.
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Figure 1: Three tasks with a controlled environment we consider in this work. The values inside the
nodes are ground truth attention coefficients, αGT

i , which we find heuristically (see Section 3.1).

However, we can notice that pooled feature maps in [11, Eq. 2] are computed in the same way as
attention outputs Z in Eq. 1 above, if we rewrite their Eq. 2 in the following way:

Zi =

{
αiXi, ∀i ∈ P
∅, otherwise,

(2)

where P is a set of indices of pooled nodes, |P | ≤ N , and ∅ denotes the unit is absent in the output.

The only difference between Eq. 2 and Eq. 1 is that Z ∈ R|P |×C , i.e. the number of units in the output
is smaller or, formally, there exists a ratio r = |P |/N ≤ 1 of preserved nodes. We leverage this
finding to integrate attention and pooling into a unified computational block of a GNN. In contrast, in
CNNs, it is challenging to achieve this, because the input is defined on a regular grid, so we need to
maintain resolution for all examples in the dataset after each pooling layer. In GNNs, we can remove
any number of nodes, so that the next layer will receive a smaller graph. When applied to the input
layer, this form of attention-based pooling also brings us interpretability of predictions, since the
network makes a decision only based on pooled nodes.

Despite the appealing nature of attention, it is often unstable to train and the conditions under which
it fails or succeeds are unclear. Motivated by insights of [12] recently proposed Graph Isomorphism
Networks (GIN), we design two simple graph reasoning tasks that allow us to study attention in
a controlled environment where we know ground truth attention. The first task is counting colors
in a graph (COLORS), where a color is a unique discrete feature. The second task is counting the
number of triangles in a graph (TRIANGLES). We confirm our observations on a standard benchmark,
MNIST [13] (Figure 1), and identify factors influencing the effectiveness of attention.

Our synthetic experiments also allow us to study the ability of attention GNNs to generalize to larger,
more complex or noisy graphs. Aiming to provide a recipe to train more effective, stable and robust
attention GNNs, we propose a weakly-supervised scheme to train attention, that does not require
ground truth attention scores, and as such is agnostic to a dataset and the choice of a model. We
validate the effectiveness of this scheme on our synthetic datasets, as well as on MNIST and on real
graph classification benchmarks in which ground truth attention is unavailable and hard to define,
namely COLLAB [14, 15], PROTEINS [16], and D&D [17].

2 Model

We study two variants of GNNs: Graph Convolutional Networks (GCN) [18] and Graph Isomorphism
Networks (GIN) [12]. One of the main ideas of GIN is to replace the MEAN aggregator over
nodes, such as the one in GCN, with a SUM aggregator, and add more fully-connected layers after
aggregating neigboring node features. The resulting model can distinguish a wider range of graph
structures than previous models [12, Figure 3].

2.1 Thresholding by attention coefficients

To pool the nodes in a graph using the method from[11] a predefined ratio r = |P |/N (Eq. 2) must be
chosen for the entire dataset. For instance, for r = 0.8 only 80% of nodes are left after each pooling
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layer. Intuitively, it is clear that this ratio should be different for small and large graphs. Therefore,
we propose to choose threshold α̃, such that only nodes with attention values αi > α̃ are propagated:

Zi =

{
αiXi, ∀i : αi > α̃

∅, otherwise.
(3)

Note, that dropping nodes from a graph is different from keeping nodes with very small, or even
zero, feature values, because a bias is added to node features after the following graph convolution
layer affecting features of neighbors. An important potential issue of dropping nodes is the change of
graph structure and emergence of isolated nodes. However, in our experiments we typically observe
that the model predicts similar α for nearby nodes, so that an entire local neighborhood is pooled or
dropped, as opposed to clustering-based methods which collapse each neighborhood to a single node.
We provide a quantitative and qualitative comparison in Section 3.

2.2 Attention subnetwork

To train an attention model that predicts the coefficients for nodes, we consider two approaches:
(1) Linear Projection [11], where a single layer projection p ∈ RC is trained: αpre = Xp; and
(2) DiffPool [10], where a separate GNN is trained:

αpre = GNN(A,X), (4)

where A is the adjacency matrix of a graph. In all cases, we use a softmax activation [1, 2]
instead of tanh in [11], because it provides more interpretable results and ecourages sparse outputs:
α = softmax(αpre). To train attention in a supervised or weakly-supervised way, we use the
Kullback-Leibler divergence loss (see Section 3.3).

2.3 ChebyGIN

In some of our experiments, the performance of both GCNs and GINs is quite poor and, consequently,
it is also hard for the attention subnetwork to learn. By combining GIN with ChebyNet [8], we
propose a stronger model, ChebyGIN. ChebyNet is a multiscale extension of GCN [18], so that for
the first scale, K = 1, node features are node features themselves, for K = 2 features are averaged
over one-hop neighbors, for K = 3 - over two-hop neighbors and so forth. To implement the SUM
aggregator in ChebyGIN, we multiply features by node degrees Di =

∑
j Aij starting from K = 2.

We also add more fully-connected layers after feature aggregation as in GIN.

3 Experiments

We introduce the color counting task (COLORS) and the triangle counting task (TRIANGLES) in
which we generate synthetic training and test graphs. We also experiment with MNIST images [13]
and three molecule and social datasets. In COLORS, TRIANGLES and MNIST tasks (Figure 1), we
assume to know ground truth attention, i.e. for each node i we heuristically define its importance
in solving the task correctly, αGT

i ∈ [0, 1], which is necessary to train (in the supervised case) and
evaluate our attention models.

3.1 Datasets

COLORS. We introduce the color counting task. We generate random graphs where features for
each node are assigned to one of the three one-hot values (colors): [1,0,0] (red), [0,1,0] (green),
[0,0,1] (blue). The task is to count the number of green nodes, Ngreen. This is a trivial task, but it
lets us study the influence of initialization of the attention model p ∈ R3 on the training dynamics.
In this task, graph structure is unimportant and edges of graphs act like a medium to exchange
node features. Ground truth attention is αGT

i = 1/Ngreen, when i corresponds to green nodes and
αGT
i = 0 otherwise. We also extend this dataset to higher n-dimensional cases p ∈ Rn to study how

model performance changes with n. In these cases, node features are still one-hot vectors and we
classify the number of nodes where the second feature is one.

TRIANGLES. Counting the number of triangles in a graph is a well-known task which can be solved
analytically by computing trace(A3)/6, where A is an adjacency matrix. This task turned out to
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be hard for GNNs, so we add node degree features as one-hot vectors to all graphs, so that the
model can exploit both graph structure and features. Compared to the COLORS task, here it is more
challenging to study the effect of initializing p, but we can still calculate ground truth attention as
αGT
i = Ti/

∑
i Ti, where Ti is the number of triangles that include node i, so that αGT

i = 0 for
nodes that are not part of triangles.

MNIST-75SP. MNIST [13] contains 70k grayscale images of size 28×28 pixels. While each of
784 pixels can be represented as a node, we follow [19, 20] and consider an alternative approach to
highlight the ability of GNNs to work on irregular grids. In particular, each image can be represented
as a small set of superpixels without losing essential class-specific information (see Figure 2). We
compute SLIC [21] superpixels for each image and build a graph, in which each node corresponds
to a superpixel with node features being pixel intensity values and coordinates of their centers of
masses. We extract N ≤ 75 superpixels, hence the dataset is denoted as MNIST-75SP. Edges are
formed based on spatial distance between superpixel centers as in [8, Eq. 8]. Each image depicts a
handwritten digit from 0 to 9 and the task is to classify the image. Ground truth attention is considered
to be αGT

i = 1/Nnonzero for superpixels with nonzero intensity, and Nnonzero is the total number of
such superpixels. The idea is that only nonzero superpixels determine the digit class.

Molecule and social datasets. We extend our study to more practical cases, where ground truth
attention is not available, and experiment with protein datasets: PROTEINS [16] and D&D [17], and a
scientific collaboration dataset, COLLAB [14, 15]. These are standard graph classification benchmarks.
A standard way to evaluate models on these datasets is to perform 10-fold cross-validation and report
average accuracy [22, 10]. In this work, we are concerned about a model’s ability to generalize
to larger and more complex or noisy graphs, therefore, we generate splits based on the number of
nodes. For instance, for PROTEINS we train on graphs with N ≤ 25 nodes and test on graphs with
6 ≤ N ≤ 620 nodes (see Table 2 for details about splits of other datasets and results).

A detailed description of tasks and model hyperparameters is provided in the Supp. Material.

3.2 Generalization to larger and noisy graphs

One of the core strengths of attention is that it makes it easier to generalize to unseen, potentially
more complex and/or noisy, inputs by reducing them to better resemble certain inputs in the training
set. To examine this phenomenon, for COLORS and TRIANGLES tasks we add test graphs that can
be several times larger (TEST-LARGE) than the training ones. For COLORS we further extend it by
adding unseen colors to the test set (TEST-LARGEC) in the format [c1, c2, c3, c4], where ci = 0 for
i 6= 2 if c2 = 1 and ci ∈ [0, 1] for i 6= 2 if c2 = 0, i.e. there is no new colors that have nonzero values
in a green channel. This can be interpreted as adding mixtures of red, blue and transparency channels,
with nine possible colors in total as opposed to three in the training set (Figure 2).
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Figure 2: Examples from training and test sets. For COLORS, the correct label is Ngreen = 4 in all
cases; for TRIANGLES Ntri = 3 and color intensities denote ground truth attention values αGT . The
range of the number of nodes, N , is shown in each case. For MNIST-75SP, we visualize graphs
for digit 7 by assigning an average intensity value to all pixels within a superpixel. Even though
superpixels have certain shapes and borders between each other (visible only on noisy graphs), we
feed only superpixel intensities and coordinates of their centers of masses to our GNNs.
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Neural networks (NNs) have been observed to be brittle if they are fed with test samples corrupted
in a subtle way, i.e. by adding a noise [23] or changing a sample in an adversarial way [24], such
that a human can still recognize them fairly well. To study this problem, test sets of standard image
benchmarks have been enlarged by adding corrupted images [25].

Graph neural networks, as a particular case of NNs, inherit this weakness. The attention mechanism,
if designed and trained properly, can improve a net’s robustness by attending to only important and
ignoring misleading parts (nodes) of data. In this work, we explore the ability of GNNs with and
without attention to generalize to noisy graphs and unseen node features. This should help us to
understand the limits of GNNs, and potentially NNs in general, with attention and conditions when it
succeedes and when it does not. To this end, we generate two additional test sets for MNIST-75SP.
In the first set, TEST-NOISY, we add Gaussian noise, drawn from N (0, 0.4), to superpixel intensity
features, i.e. the shape and coordinates of superpixels are the same as in the original clean test
set. In the second set, TEST-NOISY-C, we colorize images by adding two more channels and add
independent Gaussian noise, drawn from N (0, 0.6), to each channel (Figure 2).

3.3 Network architectures and training

We build 2 layer GNNs for COLORS and 3 layer GNNs for other tasks with 64 filters in each layer,
except for MNIST-75SP where we have more filters. Our baselines are GNNs with global sum or
max pooling (gpool), DiffPool [10] and top-k pooling [11]. We add two layers of our pooling for
TRIANGLES, each of which is a GNN with 3 layers and 32 filters (Eq. 4); whereas a single pooling
layer in the form of vector p is used in other cases. We train all models with Adam [26], learning rate
1e-3, batch size 32, weight decay 1e-4 (see the Supp. Material for details).

For COLORS and TRIANGLES we minimize the regression loss (MSE) and cross entropy (CE) for other
tasks, denoted as LMSE/CE . For experiments with supervised and weakly-supervised (described
below in Section 3.4) attention, we additionally minimize the Kullback-Leibler (KL) divergence loss
between ground truth attention αGT and predicted coefficients α. The KL term is weighted by scale
β, so that the total loss for some training graph with N nodes becomes:

L = LMSE/CE +
β

N

∑
i

αGT
i log(

αGT
i

αi
). (5)

We repeat experiments at least 10 times and report an average accuracy and standard deviation in
Tables 1 and 2. For COLORS we run experiments 100 times, since we observe larger variance. In
Table 1 we report results on all test subsets independently. In all other experiments on COLORS,
TRIANGLES and MNIST-75SP, we report an average accuracy on the combined test set. For COLLAB,
PROTEINS and D&D, we run experiments 10 times using splits described in Section 3.1.

The only hyperparameters that we tune in our experiments are threshold α̃ in our method (Eq. 3), ratio
r in top-k (Eq. 2) and β in Eq. 5. For synthetic datasets, we tune them on a validation set generated
in the same way as TEST-ORIG. For MNIST-75SP, we use part of the training set. For COLLAB,
PROTEINS and D&D, we tune them using 10-fold cross-validation on the training set.

Attention correctness. We evaluate attention correctness using area under the ROC curve (AUC) as
an alternative to other methods, such as [27], which can be overoptimistic in some extreme cases,
such as when all attention is concentrated in a single node or attention is uniformly spread over all
nodes. AUC allows us to evaluate the ranking of α instead of their absolute values. Compared to
ranking metrics, such as rank correlation, AUC enables us to directly choose a pooling threshold
α̃ from the ROC curve by finding a desired balance between false-positives (pooling unimportant
nodes) and false-negatives (dropping important nodes).

To evaluate attention correctness of models with global pooling, we follow the idea from convolutional
neural networks [28]. After training a model, we remove node i ∈ [1, N ] and compute an absolute
difference from prediction y for the original graph:

αWS
i =

|yi − y|∑N
j=1 |yj − y|

, (6)

where yi is a model’s prediction for the graph without node i. While this method shows surprisingly
high AUC in some tasks, it is not built-in in training and thus does not help to train a better model
and only implicitly interprets a model’s prediction (Figures 5 and 7). However, these results inspired
us to design a weakly-supervised method described below.
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3.4 Weakly-supervised attention supervision

Although for COLORS, TRIANGLES and MNIST-75SP we can define ground truth attention, so that
it does not require manual labeling, in practice it is usually not the case and such annotations are hard
to define and expensive, or even unclear how to produce. Based on results in Table 1, supervision
of attention is necessary to reveal its power. Therefore, we propose a weakly-supervised approach,
agnostic to the choice of a dataset and model, that does not require ground truth attention labels,
but can improve a model’s ability to generalize. Our approach is based on generating attention
coefficients αWS

i (Eq. 6) and using them as labels to train our attention model with the loss defined in
Eq 5. We apply this approach to COLORS, TRIANGLES and MNIST-75SP and observe peformance
and robustness close to supervised models. We also apply it to COLLAB, PROTEINS and D&D, and
in all cases we are able to improve results compared to unsupervised attention.

Training weakly-supervised models. Assume we want to train model A with “weak-sup” attention
on a dataset without ground truth attention. We first need to train model B that has the same
architecture as A, but does not have any attention/pooling between graph convolution layers. So,
model B has only global pooling. After training B with the LMSE/CE loss, we need to evaluate
training graphs on B in the same way as during computation of αWS in Eq. 6. In particular, for each
training graph G withN nodes, we first make a prediction y for the entire G. Then, for each i ∈ [1, N ],
we remove node i from G, and feed this reduced graph with N − 1 nodes to model B recording the
model’s prediction yi. We then use Eq. 6 to compute αWS based on y and yi. Now, we can train A
and use αWS instead of ground truth αGT in Eq. 5 to optimize both MSE/CE and KL losses.

4 Analysis of results

In this work, we aim to better understand attention and generalization in graph neural networks, and,
based on our empirical findings, below we provide our analysis for the following questions.

How powerful is attention over nodes in GNNs? Our results on the COLORS, TRIANGLES and
MNIST-75SP datasets suggest that the main strength of attention over nodes in GNNs is the ability to
generalize to more complex or noisy graphs at test time. This ability essentially transforms a model
that fails to generalize into a fairly robust one. Indeed, a classification accuracy gap for COLORS-
LARGEC between the best model without supervised attention (GIN with global pooling) and a

Table 1: Results on three tasks for different test subsets. ± denotes standard deviation, not shown
in case of small values (large values are explained in Section 4). ATTN denotes attention accuracy in
terms of AUC and is computed for the combined test set. The best result in each column (ignoring up-
per bound results) is bolded. denotes poor results with relatively low accuracy and/or high variance;

denotes failed cases with accuracy close to random and/or extremely high variance. † For COL-
ORS and MNIST-75SP, ChebyNets are used instead of ChebyGINs as described in the Supp. Material.

COLORS TRIANGLES MNIST-75SP
ORIG LARGE LARGEC ATTN ORIG LARGE ATTN ORIG NOISY NOISYC ATTN

G
lo

ba
l

po
ol

GCN 97 72±15 20±3 99.6 46±1 23±1 79 78.3±2 38±4 36±4 72±2
GIN 96±10 71±22 26±11 99.2 50±1 22±1 77 87.6±3 55±11 51±12 71±5
ChebyGIN† 100 93±12 15±7 99.8 66±1 30±1 79 97.4 80±12 79±11 72±3

U
ns

up
er

v. GIN, top-k 99.6 17±4 9±3 75±6 47±2 18±1 63±5 86±6 59±26 55±23 65±34
GIN, ours 94±18 13±7 11±6 72±15 47±3 20±2 68±3 82.6±8 51±28 47±24 58±31
ChebyGIN†, top-k 100 11±7 6±6 79±20 64±5 25±2 76±6 92.9±4 68±26 67±25 52±37
ChebyGIN†, ours 80±30 16±10 11±6 67±31 67±3 26±2 77±4 94.6±3 80±23 77±22 78±31

Su
pe

rv
is

ed

GIN, topk 87±1 39±18 28±8 99.9 49±1 20±1 88 90.5±1 85.5±2 79±5 99.3
GIN, ours 100 96±9 89±18 99.8 49±1 22±1 76±1 90.9±0.4 85.0±1 80±3 99.3
ChebyGIN†, topk 100 86±15 31±15 99.8 83±1 39±1 97 95.1±0.3 90.6±0.8 83±16 100
ChebyGIN†, ours 100 94±8 75±17 99.8 88±1 48±1 96 95.4±0.2 92.3±0.4 86±16 100

W
ea

k
su

p.

ChebyGIN†, ours 100 90±6 73±14 99.9 68±1 30±1 88 95.8±0.4 88.8±4 86±9 96.5±1

U
pp

er
bo

un
d GIN 100 100 100 100 94±1 85±2 100 93.6±0.4 90.8±1 90.8±1 100

ChebyGIN† 100 100 100 100 99.8 99.4±1 100 96.9±0.1 94.8±0.3 95.1±0.3 100
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Figure 3: Disentangling factors influencing attention and classification accuracy for COLORS (a-e)
and TRIANGLES (f). Accuracies are computed over all test subsets. Notice the exponential growth
of classification accuracy depending on attention correctness (a,b), see zoomed plots (a)-zoomed,
(b)-zoomed for cases when attention AUC>95%. (d) Probability of a good initialization is estimated
as the proportion of cases when cosine similarity > 0.5; error bars indicate standard deviation. (c-e)
show results using a higher dimensional attention model, p ∈ Rn.

similar model with supervised attention (GIN, sup) is more than 60%. For TRIANGLES-LARGE this
gap is 18% and for MNIST-75SP-NOISY it is more than 12%. This gap is even larger if compared to
upper bound cases indicating that our supervised models can be further tuned and improved. Models
with supervised or weakly-supervised attention also have a more narrow spread of results (Figure 3).0 200 400 600 800 1000

Training epoch

20

40

60

80

100

Ac
cu

ra
cy

 / 
Ra

tio
 o

f n
od

es
 (%

)

Attn AUC Avg. class. accuracy  of "should be pooled" nodes  of "should be dropped" nodes Ratio of pooled nodes, r

0.01

0.02

0.03

0.04

0.05

Pr
ed

ict
ed

 a
tte

nt
io

n 
co

ef
f.,

 

bad initialization (cos. sim.=-0.75) good initialization (cos. sim.=0.75) optimal initialization (cos. sim.=1.00)

U
N

S
U

P
E

R
V

IS
E

D
A

T
T

E
N

T
IO

N

0 200 400 600 800 1000
Training epoch

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 / 
Ra

tio
 o

f n
od

es
 (%

)

0.01

0.02

0.03

0.04

0.05

Pr
ed

ict
ed

 a
tte

nt
io

n 
co

ef
f.,

 

0 200 400 600 800 1000
Training epoch

20

40

60

80

100

Ac
cu

ra
cy

 / 
Ra

tio
 o

f n
od

es
 (%

)

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ed

ict
ed

 a
tte

nt
io

n 
co

ef
f.,

 

0 200 400 600 800 1000
Training epoch

20

40

60

80

100
Ac

cu
ra

cy
 / 

Ra
tio

 o
f n

od
es

 (%
)

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ed

ict
ed

 a
tte

nt
io

n 
co

ef
f.,

 

(a) (b) (c)

Figure 4: Influence of initialization on training dynamics for COLORS using GIN trained in the
unsupervised way. For the supervised cases, see the Supp. Material. The nodes that should be pooled
according to our ground truth prior, must have larger attention values α. However, in the unsupervised
cases, only the model with an optimal initialization (c) reaches a high accuracy, while other models
(a,b) are stuck in a suboptimal state and wrong nodes are pooled, which degrades performance. In
these experiments, we train models longer to see if they can recover from a bad initialization.

What are the factors influencing performance of GNNs with attention? We identify three key
factors influencing performance of GNNs with attention: initialization of the attention model (i.e. vec-
tor p or GNN in Eq. 4), strength of the main GNN model (i.e. the model that actually performs
classification), and finally other hyperparameters of the attention and GNN models.

We highlight initialization as the critical factor. We ran 100 experiments on COLORS with random
initializations (Figure 3, (a-e)) of the vector p and measured how performance of both attention and
classification is affected depending on how close (in terms of cosine similarity) the initialized p was
to the optimal one, p = [0, 1, 0]. We disentangle the dependency between the classification accuracy
and cos. sim. into two functions to make the relationship clearer (Figure 3, (a, c)). Interestingly, we
found that classification accuracy depends exponentially on attention correctness and becomes close
to 100% only when attention is also close to being perfect. In the case of slightly worse attention, even
starting from 99%, classification accuracy drops significantly. This is an important finding that can
also be valid for other more realistic applications. In the TRIANGLES task we only partially confirm
this finding, because our attention models could not achieve AUC high enough to boost classification.
However, by observing the upper bound results obtained by training with ground truth attention, we
assume that this boost potentially should happen once attention becomes accurate enough.
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Figure 5: Qualitative analysis. For MNIST-75SP (on the left) we show examples of input test images
(top row), results of DiffPool [10] (second row), attention weights αWS generated using a model with
global pooling based on Eq. 6 (third row), and α predicted by our weakly-supervised model (bottom
row). Both our attention-based pooling and DiffPool can be strong and interpretable depending on
the task, but in our tasks DiffPool was inferior (see the Supp. Material). For TRIANGLES (on the
right) we show an example of a test graph with N = 93 nodes with six triangles and the results of
pooling based on ground truth attention weights αGT (top row); in the bottom row we show attention
weights predicted by our weakly-supervised model and results of our threshold-based pooling (Eq. 3).
Note that during training, our model has not encountered noisy images (MNIST-75SP) nor graphs
larger than with N = 25 nodes (TRIANGLES).

Why is the variance of some results so high? In Table 1 we report high variance of results, which is
mainly due to initialization of the attention model as explained above. This variance is also caused by
initialization of other trainable parameters of a GNN, but we show that once the attention model is per-
fect, other parameters can recover from a bad initialization leading to better results. The opposite, how-
ever, is not true: we never observed recovery of a model with poorly initialized attention (Figure 4).

How top-k compares to our threshold-based pooling method? Our method to attend and pool
nodes (Eq. 3) is based on top-k pooling [11] and we show that the proposed threshold-based pooling
is superior in a principle way. When we use supervised attention our results are better by more than
40% on COLORS-LARGEC, by 9% on TRIANGLES-LARGE and by 3% on MNIST-75SP. In Figure 3
((a,b)-zoomed) we show that GIN and ChebyGIN models with supervised top-k pooling never reach
an average accuracy of more than 80% as opposed to our method which reaches 100% in many cases.

How results change with increase of attention model input dimensionality or capacity? We
performed experiments using ChebyGIN-h - a model with higher dimensionality of an input to the
attention model (see the Supp. Material for details). In such cases, it becomes very unlikely to
initialize it in a way close to optimal (Figure 3, (c-e)), and attention accuracy is concentrated in the 60-
80% region. Effect of the attention model of such low accuracy is neglible or even harmful, especially
on the large and noisy graphs. We also experimented with a deeper attention model (ChebyGIN-h),
i.e. a 2 layer fully-connected layer with 32 hidden units for COLORS and MNIST-75SP, and a deeper
GNN (Eq. 4) for TRIANGLES. This has a positive effect overall, except for TRIANGLES, where our
attention models were already deep GNNs.

Can we improve initialization of attention? In all our experiments, we initialize p from the Normal
distribution, N (0, 1). To verify if the performance can be improved by choosing another distribution,
we evaluate GIN and GCN models on a wide range of random distributions, Normal N (0, σ) and
Uniform U(−σ, σ), by varying scale σ (Figure 6). We found out that for unsupervised training
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(c) GIN: COLORS (n=3), wsup attention
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(e) GCN: COLORS (n=3), unsup attention
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Figure 6: Influence of distribution parameters used to initialize the attention model p in the COL-
ORS task with n = 3 dimensional features. We show points corresponding to the commonly used
initialization strategies of Xavier [29] and Kaiming [29]. (a-c) Shaded areas show range, bars show
±1 std. For n = 16 see the Supp. Material.
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