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Abstract

Recent works have shown that stochastic gradient descent (SGD) achieves the fast
convergence rates of full-batch gradient descent for over-parameterized models
satisfying certain interpolation conditions. However, the step-size used in these
works depends on unknown quantities and SGD’s practical performance heavily
relies on the choice of this step-size. We propose to use line-search techniques
to automatically set the step-size when training models that can interpolate the
data. In the interpolation setting, we prove that SGD with a stochastic variant of
the classic Armijo line-search attains the deterministic convergence rates for both
convex and strongly-convex functions. Under additional assumptions, SGD with
Armijo line-search is shown to achieve fast convergence for non-convex functions.
Furthermore, we show that stochastic extra-gradient with a Lipschitz line-search
attains linear convergence for an important class of non-convex functions and
saddle-point problems satisfying interpolation. To improve the proposed methods’
practical performance, we give heuristics to use larger step-sizes and acceleration.
We compare the proposed algorithms against numerous optimization methods on
standard classification tasks using both kernel methods and deep networks. The
proposed methods result in competitive performance across all models and datasets,
while being robust to the precise choices of hyper-parameters. For multi-class
classification using deep networks, SGD with Armijo line-search results in both
faster convergence and better generalization.

1 Introduction

Stochastic gradient descent (SGD) and its variants [18, 21, 35, 39, 72, 82, 87] are the preferred
optimization methods in modern machine learning. They only require the gradient for one training
example (or a small “mini-batch” of examples) in each iteration and thus can be used with large
datasets. These first-order methods have been particularly successful for training highly-expressive,
over-parameterized models such as non-parametric regression [7, 45] and deep neural networks [9,
88]. However, the practical efficiency of stochastic gradient methods is adversely affected by two
challenges: (i) their performance heavily relies on the choice of the step-size (“learning rate”) [9, 70]
and (ii) their slow convergence compared to methods that compute the full gradient (over all training
examples) in each iteration [58].
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Variance-reduction (VR) methods [18, 35, 72] are relatively new variants of SGD that improve its
slow convergence rate. These methods exploit the finite-sum structure of typical loss functions arising
in machine learning, achieving both the low iteration cost of SGD and the fast convergence rate of
deterministic methods that compute the full-gradient in each iteration. Moreover, VR makes setting
the learning rate easier and there has been work exploring the use of line-search techniques for
automatically setting the step-size for these methods [71, 72, 76, 81]. These methods have resulted
in impressive performance on a variety of problems. However, the improved performance comes
at the cost of additional memory [72] or computational [18, 35] overheads, making these methods
less appealing when training high-dimensional models on large datasets. Moreover, in practice VR
methods do not tend to converge faster than SGD on over-parameterized models [19].

Indeed, recent works [5, 13, 33, 47, 52, 73, 83] have shown that when training over-parameterized
models, classic SGD with a constant step-size and without VR can achieve the convergence rates of
full-batch gradient descent. These works assume that the model is expressive enough to interpolate
the data. The interpolation condition is satisfied for models such as non-parametric regression [7, 45],
over-parametrized deep neural networks [88], boosting [69], and for linear classifiers on separable
data. However, the good performance of SGD in this setting relies on using the proposed constant
step-size, which depends on problem-specific quantities not known in practice. On the other hand,
there has been a long line of research on techniques to automatically set the step-size for classic
SGD. These techniques include using meta-learning procedures to modify the main stochastic
algorithm [2, 6, 63, 75, 77, 86, 86], heuristics to adjust the learning rate on the fly [20, 43, 70, 74],
and recent adaptive methods inspired by online learning [21, 39, 51, 60, 67, 68, 87]. However, none
of these techniques have been proved to achieve the fast convergence rates that we now know are
possible in the over-parametrized setting.

In this work, we use classical line-search methods [59] to automatically set the step-size for SGD
when training over-parametrized models. Line-search is a standard technique to adaptively set the
step-size for deterministic methods that evaluate the full gradient in each iteration. These methods
make use of additional function/gradient evaluations to characterize the function around the current
iterate and adjust the magnitude of the descent step. The additional noise in SGD complicates the use
of line-searches in the general stochastic setting and there have only been a few attempts to address
this. Mahsereci et al. [53] define a Gaussian process model over probabilistic Wolfe conditions and
use it to derive a termination criterion for the line-search. The convergence rate of this procedure
is not known, and experimentally we found that our proposed line-search technique is simpler to
implement and more robust. Other authors [12, 17, 22, 42, 62] use a line-search termination criteria
that requires function/gradient evaluations averaged over multiple samples. However, in order to
achieve convergence, the number of samples required per iteration (the “batch-size”) increases
progressively, losing the low per iteration cost of SGD. Other work [11, 26] exploring trust-region
methods assume that the model is sufficiently accurate, which is not guaranteed in the general
stochastic setting. In contrast to these works, our line-search procedure does not consider the general
stochastic setting and is designed for models that satisfy interpolation; it achieves fast rates in the
over-parameterized regime without the need to manually choose a step-size or increase the batch size.

We make the following contributions: in Section 3 we prove that, under interpolation, SGD with a
stochastic variant of the Armijo line-search attains the convergence rates of full-batch gradient descent
in both the convex and strongly-convex settings. We achieve these rates under weaker assumptions
than the prior work [83] and without the explicit knowledge of problem specific constants. We
then consider minimizing non-convex functions satisfying interpolation [5, 83]. Previous work [5]
proves that constant step-size SGD achieves a linear rate for non-convex functions satisfying the
PL inequality [37, 65]. SGD is further known to achieve deterministic rates for general non-convex
functions under a stronger assumption on the growth of the stochastic gradients [73, 83]. Under
this assumption and an upper bound (that requires knowledge of the “Lipschitz” constant) on the
maximum step size, we prove that SGD with Armijo line-search can achieve the deterministic rate
for general non-convex functions (Section 4). Note that these are the first convergence rates for SGD
with line-search in the interpolation setting for both convex and non-convex functions.

Moving beyond SGD, in Section 5 we consider the stochastic extra-gradient (SEG) method [24,
31, 36, 41, 55] used to solve general variational inequalities [27]. These problems encompass both
convex minimization and saddle point problems arising in robust supervised learning [8, 84] and
learning with non-separable losses or regularizers [4, 34]. In the interpolation setting, we show that
a variant of SEG [24] with a “Lipschitz” line-search convergences linearly when minimizing an
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important class of non-convex functions [16, 40, 44, 78, 79] satisfying the restricted secant inequality
(RSI). Moreover, in Appendix E, we prove that the same algorithm results in linear convergence for
both strongly convex-concave and bilinear saddle point problems satisfying interpolation.

In Section 6, we give heuristics to use large step-sizes and integrate acceleration with our line-
search techniques, which improves practical performance of the proposed methods. We compare our
algorithms against numerous optimizers [21, 39, 51, 53, 60, 68] on a synthetic matrix factorization
problem (Section 7.2), convex binary-classification problems using radial basis function (RBF)
kernels (Section 7.3), and non-convex multi-class classification problems with deep neural networks
(Section 7.4). We observe that when interpolation is (approximately) satisfied, the proposed methods
are robust and have competitive performance across models and datasets. Moreover, SGD with
Armijo line-search results in both faster convergence and better generalization performance for
classification using deep networks. Finally, in Appendix G.2, we evaluate SEG with line-search
for synthetic bilinear saddle point problems. The code to reproduce our results can be found at
https://github.com/IssamLaradji/sls.

We note that in concurrent work to ours, Berrada et al. [10] propose adaptive step-sizes for SGD
on convex, finite-sum loss functions under an ✏-interpolation condition. Unlike our approach, ✏-
interpolation requires knowledge of a lower bound on the global minimum and only guarantees
approximate convergence to a stationary point. Moreover, in order to obtain linear convergence rates,
they assume µ-strong-convexity of each individual function. This assumption with ✏-interpolation
reduces the finite-sum optimization to minimization of any single function in the finite sum.

2 Assumptions

We aim to minimize a differentiable function f assuming access to noisy stochastic gradients of the
function. We focus on the common machine learning setting where the function f has a finite-sum
structure meaning that f(w) = 1

n

Pn
i=1 fi(w). Here n is equal to the number of points in the training

set and the function fi is the loss function for the training point i. Depending on the model, f can
either be strongly-convex, convex, or non-convex. We assume that f is lower-bounded by some value
f
⇤ and that f is L-smooth [56] implying that the gradientrf is L-Lipschitz continuous.

We assume that the model is able to interpolate the data and use this property to derive convergence
rates. Formally, interpolation requires that the gradient with respect to each point converges to zero at
the optimum, implying that if the function f is minimized at w⇤ and thus rf(w⇤) = 0, then for all
functions fi we have that rfi(w⇤) = 0. For example, interpolation is exactly satisfied when using a
linear model with the squared hinge loss for binary classification on linearly separable data.

3 Stochastic Gradient Descent for Convex Functions

Stochastic gradient descent (SGD) computes the gradient of the loss function corresponding to one or
a mini-batch of randomly (typically uniformly) chosen training examples ik in iteration k. It then
performs a descent step as wk+1 = wk � ⌘krfik(wk), where wk+1 and wk are the SGD iterates,
⌘k is the step-size and rfik(·) is the (average) gradient of the loss function(s) chosen at iteration k.
Each stochastic gradient rfik(w) is assumed to be unbiased, implying that Ei [rfi(w)] = rf(w)
for all w. We now describe the Armijo line-search method to set the step-size in each iteration.

3.1 Armijo line-search

Armijo line-search [3] is a standard method for setting the step-size for gradient descent in the
deterministic setting [59]. We adapt it to the stochastic case as follows: at iteration k, the Armijo
line-search selects a step-size satisfying the following condition:

fik (wk � ⌘krfik(wk))  fik(wk)� c · ⌘k krfik(wk)k2 . (1)

Here, c > 0 is a hyper-parameter. Note that the above line-search condition uses the function and
gradient values of the mini-batch at the current iterate wk. Thus, compared to SGD, checking this
condition only makes use of additional mini-batch function (and not gradient) evaluations. In the
context of deep neural networks, this corresponds to extra forward passes on the mini-batch.

In our theoretical results, we assume that there is a maximum step-size ⌘max from which the line-
search starts in each iteration k and that we choose the largest step-size ⌘k (less than or equal to ⌘max)
satisfying (1). In practice, backtracking line-search is a common way to ensure that Equation 1 is
satisfied. Starting from ⌘max, backtracking iteratively decreases the step-size by a constant factor
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� until the line-search succeeds (see Algorithm 1). Suitable strategies for resetting the step-size
can avoid backtracking in the majority of iterations and make the step-size selection procedure
efficient. We describe such strategies in Section 6. With resetting, we required (on average) only one
additional forward pass on the mini-batch per iteration when training a standard deep network model
(Section 7.4). Empirically, we observe that the algorithm is robust to the choice of both c and ⌘max;
setting c to a small constant and ⌘max to a large value consistently results in good performance.

We bound the chosen step-size in terms of the properties of the function(s) selected in iteration k.
Lemma 1. The step-size ⌘k returned by the Armijo line-search and constrained to lie in the (0, ⌘max]
range satisfies the following inequality,

⌘k � min

⇢
2 (1� c)

Lik
, ⌘max

�
, (2)

where Lik is the Lipschitz constant ofrfik .
The proof is in Appendix A and follows the deterministic case [59]. Note that Equation (1) holds for
all smooth functions (for small-enough ⌘k), does not require convexity, and guarantees backtracking
line-search will terminate at a non-zero step-size. The parameter c controls the “aggressiveness” of
the algorithm; small c values encourage a larger step-size. For a sufficiently large ⌘max and c  1/2,
the step-size is at least as large as 1/Lik, which is the constant step-size used in the interpolation
setting [73, 83]. In practice, we expect these larger step-sizes to result in improved performance. In
Appendix A, we also give upper bounds on ⌘k if the function fik satisfies the Polyak-Lojasiewicz
(PL) inequality [37, 65] with constant µik. PL is a weaker condition than strong-convexity and does
not require convexity. In this case, ⌘k is upper-bounded by the minimum of ⌘max and 1/(2c · µik). If
we use a backtracking line-search that multiplies the step-size by � until (1) holds, the step-size will
be smaller by at most a factor of � (we do not include this dependence in our results).

3.2 Convergence rates

In this section, we characterize the convergence rate of SGD with Armijo line-search in the strongly-
convex and convex cases. The theorems below are proved in Appendix B and Appendix C respectively.
Theorem 1 (Strongly-Convex). Assuming (a) interpolation, (b) Li-smoothness, (c) convexity of fi’s,
and (d) µ strong-convexity of f , SGD with Armijo line-search with c = 1/2 in Eq. 1 achieves the rate:

E
h
kwT � w

⇤k2
i
 max

⇢✓
1� µ̄

Lmax

◆
, (1� µ̄ ⌘max)

�T

kw0 � w
⇤k2 .

Here µ̄ =
Pn

i=1 µi/n is the average strong-convexity of the finite sum and Lmax = maxi Li is the
maximum smoothness constant in the fi’s.

In contrast to the previous results [52, 73, 83] that depend on µ, the above linear rate depends on
µ̄  µ. Note that unlike Berrada et al. [10], we do not require that each fi is strongly convex, but for
µ̄ to be non-zero we still require that at least one of the fi’s is strongly-convex.
Theorem 2 (Convex). Assuming (a) interpolation, (b) Li-smoothness and (c) convexity of fi’s, SGD
with Armijo line-search for all c > 1/2 in Equation 1 and iterate averaging achieves the rate:

E [f(w̄T )� f(w⇤)] 
c ·max

n
Lmax

2 (1�c) ,
1

⌘max

o

(2c� 1) T
kw0 � w

⇤k2 .

Here, w̄T =
[
PT

i=1 wi]
T is the averaged iterate after T iterations and Lmax = maxi Li.

In particular, setting c = 2/3 implies that E [f(w̄T )� f(w⇤)]  max{3 Lmax, 2
⌘max }

T kw0 � w
⇤k2.

These are the first rates for SGD with line-search in the interpolation setting and match the corre-
sponding rates for full-batch gradient descent on strongly-convex and convex functions. This shows
SGD attains fast convergence under interpolation without explicit knowledge of the Lipschitz constant.
Next, we use the above line-search to derive convergence rates of SGD for non-convex functions.

4 Stochastic Gradient Descent for Non-convex Functions

To prove convergence results in the non-convex case, we additionally require the strong growth con-
dition (SGC) [73, 83] to hold. The function f satisfies the SGC with constant ⇢, if Ei krfi(w)k2 
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⇢ krf(w)k2 holds for any point w. This implies that if rf(w) = 0, then rfi(w) = 0 for all i.
Thus, functions satisfying the SGC necessarily satisfy the interpolation property. The SGC holds for
all smooth functions satisfying a PL condition [83]. Under the SGC, we show that by upper-bounding
the maximum step-size ⌘max, SGD with Armijo line-search achieves an O(1/T ) convergence rate.
Theorem 3 (Non-convex). Assuming (a) the SGC with constant ⇢ and (b) Li-smoothness of fi’s,
SGD with Armijo line-search in Equation 1 with c = 1/2 and setting ⌘max = 3/2⇢L achieves the rate:

min
k=0,...,T�1

E krf(wk)k2 
4 Lmax

T

✓
2⇢

3
+ 1

◆
(f(w0)� f(w⇤)) .

We prove Theorem 3 in Appendix D. The result requires knowledge of ⇢ Lmax to bound the maximum
step-size, which is less practically appealing. It is not immediately clear how to relax this condition
and we leave it for future work. However, in the next section, we show that if the non-convex function
satisfies a specific curvature condition, a modified stochastic extra-gradient algorithm can achieve a
linear rate under interpolation without additional assumptions or knowledge of the Lipschitz constant.

5 Stochastic Extra-Gradient Method

In this section, we use a modified stochastic extra-gradient (SEG) method for convex and non-convex
minimization. For finite-sum minimization, stochastic extra-gradient (SEG) has the following update:

w
0
k = wk � ⌘krfik(wk) , wk+1 = wk � ⌘krfik(w0

k). (3)

It computes the gradient at an extrapolated point w0
k and uses it in the update from the current iterate

wk. Note that using the same sample ik and step-size ⌘k for both steps [24] is important for the
subsequent theoretical results. We now describe a “Lipschitz” line-search strategy [31, 32, 38] in
order to automatically set the step-size for SEG.

5.1 Lipschitz line-search

The “Lipschitz” line-search has been used by previous work in the deterministic [32, 38] and the
variance reduced settings [30]. It selects a step-size ⌘k that satisfies the following condition:

krfik(wk � ⌘krfik(wk))�rfik(wk)k  c krfik(wk)k . (4)

As before, we use backtracking line-search starting from the maximum value of ⌘max to ensure that
the chosen step-size satisfies the above condition. If the function fik is Lik-smooth, the step-size
returned by the Lipschitz line-search satisfies ⌘k � min {c/Lik, ⌘max}. Like the Armijo line-search in
Section 3, the Lipschitz line-search does not require knowledge of the Lipschitz constant. Unlike
the line-search strategy in the previous sections, checking condition (4) requires computing the
gradient at a prospective extrapolation point. We now prove convergence rates for SEG with Lipschitz
line-search for both convex and a special class of non-convex problems.

5.2 Convergence rates for minimization

For the next result, we assume that each function fi(·) satisfies the restricted secant inequality (RSI)
with constant µi, implying that for all w, hrfi(w), w � w

⇤i � µi kw � w
⇤k2. RSI is a weaker

condition than strong-convexity. With additional assumptions, RSI is satisfied by important non-
convex models such as single hidden-layer neural networks [40, 44, 78], matrix completion [79] and
phase retrieval [16]. Under interpolation, we show SEG results in linear convergence for functions
satisfying RSI. In particular, we obtain the following guarantee:
Theorem 4 (Non-convex + RSI). Assuming (a) interpolation, (b) Li-smoothness, and (c) µi-RSI of
fi’s, SEG with Lipschitz line-search in Eq. 4 with c = 1/4 and ⌘max  mini 1/4µi achieves the rate:

E
h
kwT � PX⇤ [wT ]k2

i
 max

⇢✓
1� µ̄

4 Lmax

◆
, (1� ⌘max µ̄)

�T

kw0 � PX⇤ [w0]k2 ,

where µ̄ =
Pn

i=1 µi

n is the average RSI constant of the finite sum and X ⇤ is the non-empty set of
optimal solutions. The operation PX⇤ [w] denotes the projection of w onto X ⇤.
See Appendix E.2 for proof. Similar to the result of Theorem 1, the rate depends on the average
RSI constant. Note that we do not require explicit knowledge of the Lipschitz constant to achieve
the above rate. The constraint on the maximum step-size is mild since the minimum µi is typically
small, thus allowing for large step-sizes. Moreover, Theorem 4 improves upon the

�
1� µ

2
/L

2
�

rate
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Algorithm 1 SGD+Armijo(f , w0, ⌘max, b, c, �, �, opt)
1: for k = 0, . . . , T do

2: ik  sample mini-batch of size b

3: ⌘  reset(⌘, ⌘max, �, b, k, opt)/�
4: repeat

5: ⌘  � · ⌘
6: w̃k  wk � ⌘rfik(wk)
7: until fik(w̃k)  fik(wk)� c · ⌘ krfik(wk)k2
8: wk+1  w̃k

9: end for

10: return wk+1

Algorithm 2 reset(⌘, ⌘max, �, b, k, opt)
1: if k = 1 then

2: return ⌘max
3: else if opt = 0 then

4: ⌘  ⌘

5: else if opt = 1 then

6: ⌘  ⌘max
7: else if opt = 2 then

8: ⌘  ⌘ · �b/n

9: end if

10: return ⌘

Figure 1: Algorithm 1 gives pseudo-code for SGD with Armijo line-search. Algorithm 2 implements
several heuristics (by setting opt) for resetting the step-size at each iteration.

obtained using constant step-size SGD [5, 83]. In Appendix E.2, we show that the same rate can be
attained by SEG with a constant step-size. In Appendix E.3, we show that under interpolation, SEG
with Lipschitz line-search also achieves the desired O(1/T ) rate for convex functions.

5.3 Convergence rates for saddle point problems

In Appendix E.4, we use SEG with Lipschitz line-search for a class of saddle point problems
of the form minu2U maxv2V �(u, v). Here U and V are the constraint sets for the variables u

and v respectively. In Theorem 6 in Appendix E.4, we show that under interpolation, SEG with
Lipschitz line-search results in linear convergence for functions �(u, v) that are strongly-convex in u

and strongly-concave in v. The required conditions are satisfied for robust optimization [84] with
expressive models capable of interpolating the data. Furthermore, the interpolation property can be
used to improve the convergence for a bilinear saddle-point problem [24, 25, 54, 85]. In Theorem 7
in Appendix E.5, we show that SEG with Lipschitz line-search results in linear convergence under
interpolation. We empirically validate this claim with simple synthetic experiments in Appendix G.2.

6 Practical Considerations

In this section, we give heuristics to use larger step-sizes across iterations and discuss ways to use
common acceleration schemes with our line-search techniques.

6.1 Using larger step-sizes

Recall that our theoretical analysis assumes that the line-search in each iteration starts from a global
maximum step-size ⌘max. However, in practice, this strategy increases the amount of backtracking
and consequently the algorithm’s runtime. A simple alternative is to initialize the line-search in each
iteration to the step-size selected in the previous iteration ⌘k�1. With this strategy, the step-size can
not increase and convergence is slowed in practice (it takes smaller steps than necessary). To alleviate
these problems, we consider increasing the step-size across iterations by initializing the backtracking
at iteration k with ⌘k�1 · �b/n [71, 72], where b is the size of the mini-batch and � > 1 is a tunable
parameter. These heuristics correspond to the options used in Algorithm 2.

We also consider the Goldstein line-search that uses additional function evaluations to check the
curvature condition fik (wk � ⌘krfik(wk)) � fik(wk)� (1� c) · ⌘k krfik(wk)k2 and increases
the step-size if it is not satisfied. Here, c is the constant in Equation 1. The resulting method decreases
the step-size if the Armijo condition is not satisfied and increases it if the curvature condition does
not hold. Algorithm 3 in Appendix H gives pseudo-code for SGD with the Goldstein line-search.

6.2 Acceleration

In practice, augmenting stochastic methods with some form of momentum or acceleration [57, 64]
often results in faster convergence [80]. Related work in this context includes algorithms specifically
designed to achieve an accelerated rate of convergence in the stochastic setting [1, 23, 46]. Unlike
these works, we propose simple ways of using either Polyak [64] or Nesterov [57] acceleration with
the proposed line-search techniques. In both cases, similar to adaptive methods using momentum [80],
we use SGD with Armijo line-search to determine ⌘k and then use it directly within the acceleration
scheme. When using Polyak momentum, the effective update can be given as: wk+1 = wk �
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⌘krfik(wk) + ↵(wk � wk�1), where ↵ is the momentum factor. This update rule has been used
with a constant step-size and proven to obtain linear convergence rates on the generalization error for
quadratic functions under an interpolation condition [48, 49]. For Nesterov acceleration, we use the
variant for the convex case [57] (which has no additional hyper-parameters) with our line-search. The
pseudo-code for using these methods with the Armijo line-search is given in Appendix H.

7 Experiments

Figure 2: Matrix factorization using the true model and rank 1, 4, 10 factorizations. Rank 1
factorization is under-parametrized, while ranks 4 and 10 are over-parametrized. Rank 10 and the
true model satisfy interpolation.

Figure 3: Binary classification using a softmax loss and RBF kernels for the mushrooms and ijcnn
datasets. Mushrooms is linear separable in kernel-space with the selected kernel bandwidths while
ijcnn is not. Overall, we observe fast convergence of SGD + Armijo, Nesterov + Armijo, and SEG +
Lipschitz for both datasets.

We describe the experimental setup in Section 7.1. In Section 7.2, we present synthetic experiments to
show the benefits of over-parametrization. In Sections 7.3 and 7.4, we showcase the convergence and
generalization performance of our methods for kernel experiments and deep networks, respectively.

7.1 Experimental setup

We benchmark five configurations of the proposed line-search methods: SGD with (1) Armijo
line-search with resetting the initial step-size (Algorithm 1 using option 2 in Algorithm 2), (2)
Goldstein line-search (Algorithm 3), (3) Polyak momentum (Algorithm 5), (4) Nesterov acceleration
(Algorithm 6), and (5) SEG with Lipschitz line-search (Algorithm 4) with option 2 to reset the step-
size. Appendix F gives additional details on our experimental setup and the default hyper-parameters
used for the proposed line-search methods. We compare our methods against Adam [39], which is
the most common adaptive method, and other methods that report better performance than Adam:
coin-betting [60], L41 [68], and Adabound [51]. We use the default learning rates for the competing
methods. Unless stated otherwise, our results are averaged across 5 independent runs.

1L4 applied to momentum SGD (L4 Mom) in https://github.com/iovdin/l4-pytorch was unstable
in our experiments and we omit it from the main paper.
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Figure 4: Multi-class classification using softmax loss and (top) an MLP model for MNIST; ResNet
model for CIFAR-10 and CIFAR-100 (bottom) DenseNet model for CIFAR-10 and CIFAR-100.

Figure 5: (Left) Variation in step-sizes for SGD+Armijo for the matrix factorization problem and
classification with deep neural networks. (Right) Average time per iteration.

7.2 Synthetic experiment

We examine the effect of over-parametrization on convergence rates for the non-convex regres-
sion problem: minW1,W2 Ex⇠N(0,I) kW2W1x�Axk2. This is equivalent to a matrix factorization
problem satisfying RSI [79] and has been proposed as a challenging benchmark for gradient de-
scent methods [66]. Following Rolínek et al. [68], we choose A 2 R10⇥6 with condition number
(A) = 1010 and generate a fixed dataset of 1000 samples. Unlike the previous work, we consider
stochastic optimization and control the model’s expressivity via the rank k of the matrix factors
W1 2 Rk⇥6 and W2 2 R10⇥k. Figure 2 shows plots of training loss (averaged across 20 runs) for
the true data-generating model, and using factors with rank k 2 {1, 4, 10}.

We make the following observations: (i) for k = 4 (where interpolation does not hold) the proposed
methods converge quicker than other optimizers but all methods reach an artificial optimization floor,
(ii) using k = 10 yields an over-parametrized model where SGD with both Armijo and Goldstein
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line-search converge linearly to machine precision, (iii) SEG with Lipschitz line-search obtains fast
convergence according to Theorem 4, and (iv) adaptive-gradient methods stagnate in all cases. These
observations validate our theoretical results and show that over-parameterization and line-search can
allow for fast, “painless” optimization using SGD and SEG.

7.3 Binary classification with kernels

We consider convex binary classification using RBF kernels without regularization. We experiment
with four standard datasets: mushrooms, rcv1, ijcnn, and w8a from LIBSVM [14]. The mushrooms
dataset satisfies the interpolation condition with the selected kernel bandwidths, while ijcnn, rcv1,
and w8a do not. For these experiments we also compare against a standard VR method (SVRG) [35]
and probabilistic line-search (PLS) [53].2 Figure 3 shows the training loss and test accuracy on
mushrooms and ijcnn for the different optimizers with softmax loss. Results for rcv1 and w8a are
given in Appendix G.3. We make the following observations: (i) SGD + Armijo, Nesterov + Armijo,
and SEG + Lipschitz perform the best and are comparable to hand-tuned SVRG. (ii) The proposed
line-search methods perform well on ijcnn even though it is not separable in kernel space. This
demonstrates some robustness to violations of the interpolation condition.

7.4 Multi-class classification using deep networks

We benchmark the convergence rate and generalization performance of our line-search methods
on standard deep learning experiments. We consider non-convex minimization for multi-class
classification using deep network models on the MNIST, CIFAR10, and CIFAR100 datasets. Our
experimental choices follow the setup in Luo et al. [51]. For MNIST, we use a 1 hidden-layer
multi-layer perceptron (MLP) of width 1000. For CIFAR10 and CIFAR100, we experiment with
the standard image-classification architectures: ResNet-34 [28] and DenseNet-121 [29]. We also
compare to the best performing constant step-size SGD with the step-size selected by grid search.

From Figure 4, we observe that: (i) SGD with Armijo line-search consistently leads to the best
performance in terms of both the training loss and test accuracy. It also converges to a good solution
much faster when compared to the other methods. (ii) The performance of SGD with line-search and
Polyak momentum is always better than “tuned” constant step-size SGD and Adam, whereas that
of SGD with Goldstein line-search is competitive across datasets. We omit Nesterov + Armijo as it
unstable and diverges and omit SEG since it resulted in slower convergence and worse performance.

We also verify that our line-search methods do not lead to excessive backtracking and function
evaluations. Figure 5 (right) shows the cost per iteration for the above experiments. Our line-searches
methods are only marginally slower than Adam and converge much faster. In practice, we observed
SGD+Armijo uses only one additional function evaluation on average. Figure 5 (left) shows the
evolution of step-sizes for SGD+Armijo in our experiments. For deep neural networks, SGD+Armijo
automatically finds a step-size schedule resembling cosine-annealing [50]. In Appendix G.1, we
evaluate and compare the hyper-parameter sensitivity of Adam, constant step-size SGD, and SGD
with Armijo line-search on CIFAR10 with ResNet-34. While SGD is sensitive to the choice of the
step-size, the performance of SGD with Armijo line-search is robust to the value of c in the [0.1, 0.5]
range. There is virtually no effect of ⌘max, since the correct range of step-sizes is found in early
iterations.

8 Conclusion

We showed that under the interpolation condition satisfied by modern over-parametrized models,
simple line-search techniques for classic SGD and SEG lead to fast convergence in both theory and
practice. For future work, we hope to strengthen our results for non-convex minimization using SGD
with line-search and study stochastic momentum techniques under interpolation. More generally,
we hope to utilize the rich literature on line-search and trust-region methods to improve stochastic
optimization for machine learning.

2PLS is impractical for deep networks since it requires the second moment of the mini-batch gradients and
needs GP model inference for every line-search evaluation.
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