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Abstract

While artificial intelligence (AI) holds promise for addressing societal challenges,
issues of exactly which tasks to automate and to what extent to do so remain un-
derstudied. We approach this problem of task delegability from a human-centered
perspective by developing a framework on human perception of task delegation to
AI. We consider four high-level factors that can contribute to a delegation deci-
sion: motivation, difficulty, risk, and trust. To obtain an empirical understanding
of human preferences in different tasks, we build a dataset of 100 tasks from aca-
demic papers, popular media portrayal of AI, and everyday life, and administer
a survey based on our proposed framework. We find little preference for full AI
control and a strong preference for machine-in-the-loop designs, in which hu-
mans play the leading role. Among the four factors, trust is the most correlated
with human preferences of optimal human-machine delegation. This framework
represents a first step towards characterizing human preferences of AI automation
across tasks. We hope this work encourages future efforts towards understand-
ing such individual attitudes; our goal is to inform the public and the AI research
community rather than dictating any direction in technology development.

1 Introduction

Recent developments in machine learning have led to significant excitement about the promise of
artificial intelligence. Ng [35] claims that “artificial intelligence is the new electricity.” Artificial
intelligence indeed approaches or even outperforms human-level intelligence in critical domains
such as hiring, medical diagnosis, and judicial systems [7, 10, 12, 23, 29]. However, we also observe
growing concerns about which problems are appropriate applications of AI. For instance, a recent
study used deep learning to predict sexual orientation from images [45]. This study has caused
controversy [32, 34]: Glaad and the Human Rights Campaign denounced the study as “junk science”
that “threatens the safety and privacy of LGBTQ and non-LGBTQ people alike” [2]. In general,
researchers also worry about the impact on jobs and the future of employment [14, 42, 44].

Such excitement and concern begs a fundamental question at the interface of artificial intelligence
and human society: which tasks should be delegated to AI, and in what way? To answer this
question, we need to at least consider two dimensions. The first dimension is capability. Machines
may excel at some tasks, but struggle at others; this area has been widely explored since Fitts first
tackled function allocation in 1951 [13, 36, 38]. The goal of AI research has also typically focused
on pushing the boundaries of machine ability and exploring what AI can do.

The second dimension is human preferences, i.e., what role humans would like AI to play. The
automation of some tasks is celebrated, while others should arguably not be automated for reasons
beyond capability alone. For instance, automated civil surveillance may be disastrous from ethical,
privacy, and legal standpoints. Motivation is another reason: no matter the quality of machine
text generation, it is unlikely that an aspiring writer will derive the same satisfaction or value from
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delegating their writing to a fully automated system. Despite the clear importance of understanding
human preferences, the question of what AI should do remains understudied in AI research.

In this work, we present the first empirical study to understand how different factors relate to human
preferences of delegability, i.e., to what extent AI should be involved. Our contributions are three-
fold. First, building on prior literature on function allocation, mixed-initiative systems, and trust and
reliance on machines [20, 27, 36, inter alia], we develop a framework of four factors — motivation,
difficulty, risk, and trust — to explain task delegability. Second, we construct a dataset of diverse
tasks ranging from those found in academic research to ones that people routinely perform in daily
life. Third, we conduct a survey to solicit human evaluations of the four factors and delegation pref-
erences, and validate the effectiveness of our framework. We find that our survey participants seldom
prefer full automation, but value AI assistance. Among the four factors, trust is the most correlated
with human preferences of delegability. However, the need for interpretability, a component in trust,
does not show a strong correlation with delegability. Our study contributes towards a framework of
task delegability and an evolving database of tasks and their associated human preferences.

2 Related Work

As machine learning grows further embedded in society, human preferences of AI automation gain
relevance. We believe surveying, tracking, and understanding such preferences is important. How-
ever, apart from human-machine integration studies on specific tasks, the primary mode of thinking
in AI research is towards automation. We summarize related work in three main areas.

Task allocation and delegation. Several studies have proposed theories of delegation in the context
of general automation [6, 33, 36, 38]. Function allocation examines how to best divide tasks based
on human and machine abilities [13, 36, 38]. Castelfranchi and Falcone [6] emphasize the role of
risk, uncertainty, and trust in delegation, which we build on in developing our framework. Milewski
and Lewis [33] suggest that people may not want to delegate to machines in tasks characterized
by low trust or low confidence, where automation is unnecessary, or where automation does not
add to utility. In the context of jobs and their susceptibility to automation, Frey and Osborne [14]
find social, creative, and perception-manipulation requirements to be good prediction criteria for
machine ability. Parasuraman et al.’s Levels of Automation is the closest to our work [36]. However,
their work is primarily concerned with performance-based criteria (e.g., capability, reliability, cost),
while our interest involves human preferences.

Shared-control design paradigms. Many tasks are amenable to a mix of human and machine
control. Mixed-initiative systems and collaborative control have gained traction over function allo-
cation, driven by the need for flexibility and adaptability, and the importance of a user’s goals in
optimizing value-added automation [4, 20, 21].

We broadly split work on shared-control systems into two categories. We find this split more flexible
and practical for our application than the Levels of Automation. On one side, we have human-in-
the-loop machine learning designs, wherein humans assist machines. The human role is to oversee,
handle edge cases, augment training sets, and refine system outputs. Such designs enjoy prevalence
in applications from vision and recognition to translation [5, 11, 18]. Alternatively, a machine-in-
the-loop paradigm places the human in the primary position of action and control while the machine
assists. Examples of this include a creative-writing assistance system that generates contextual sug-
gestions [8, 41], and predicting situations in which people are likely to make judgmental errors in
decision-making [1]. Even tasks which should not be automated may still benefit from machine
assistance [16, 17, 24], especially if human performance is not the upper bound as Kleinberg et al.
found in judge bail decisions [23].

Trust and reliance on machines. Finally, we consider the community’s interest in trust. As au-
tomation grows in complexity, complete understanding becomes impossible; trust serves as a proxy
for rational decisions in the face of uncertainty, and appropriate use of technology becomes criti-
cal [27]. As such, calibration of trust continues to be a popular avenue of research [15, 28]. Lee
and See [27] identify three bases of trust in automation: performance, process, and purpose. Perfor-
mance describes the automation’s ability to reliably achieve the operator’s goals. Process describes
the inner workings of the automation; examples include dependability, integrity, and interpretability
(in particular, interpretable ML has received significant interest [9, 22, 39, 40]). Finally, purpose
refers to the intent behind the automation and its alignment with the user’s goals.
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Factors Components

Motivation Intrinsic motivation, goals, utility

Difficulty Social skills, creativity, effort required, expertise
required, human ability

Risk Accountability, uncertainty, impact

Trust Machine ability, interpretability, value alignment

Table 1: An overview of the four factors in our AI task dele-
gability framework.

Motivation

Delegation
Decision DifficultyTrust

Risk

Figure 1: Factors behind task dele-
gability.

3 A Framework for Task Delegability

To explain human preferences of task delegation to AI, we develop a framework with four factors: a
person’s motivation in undertaking the task, their perception of the task’s difficulty, their perception
of the risk associated with accomplishing the task, and finally their trust in the AI agent. We choose
these factors because motivation, difficulty, and risk respectively cover why a person chooses to
perform a task, the process of performing a task, and the outcome, while trust captures the interaction
between the person and the AI. We now explain the four factors, situate them in literature, and
present the statements used in the surveys to capture each component. Table 1 presents an overview.

Motivation. Motivation is an energizing factor that helps initiate, sustain, and regulate task-related
actions by directing our attention towards goals or values [25, 30]. Affective (emotional) and cogni-
tive processes are thought to be collectively responsible for driving action, so we consider intrinsic
motivation and goals as two components in motivation [30]. We also distinguish between learning
goals and performance goals, as indicated by Goal Setting Theory [31]. Finally, the expected utility
of a task captures its value from a rational cost-benefit analysis perspective [20]. Note that a task
may be of high intrinsic motivation yet low utility, e.g., reading a novel. Specifically, we use the
following statements to measure these motivation components in our surveys:
1. Intrinsic Motivation: “I would feel motivated to perform this task, even without needing to; for

example, it is fun, interesting, or meaningful to me.”
2. Goals: “I am interested in learning how to master this task, not just in completing the task.”
3. Utility: “I consider this task especially valuable or important; I would feel committed to com-

pleting this task because of the value it adds to my life or the lives of others.”
Difficulty. Difficulty is a subjective measure reflecting the cost of performing a task. For delegation,
we frame difficulty as the interplay between task requirements and the ability of a person to meet
those requirements. Some tasks are difficult because they are time-consuming or laborious; others,
because of the required training or expertise. To differentiate the two, we include effort required
and expertise required as components in difficulty. The third component, belief about abilities
possessed, can also be thought of as task-specific self-confidence (also called self-efficacy [3]) and
has been empirically shown to predict allocation strategies between people and automation [26].
Additionally, we contextualize our difficulty measures with two specific skill requirements: the
amount of creativity and social skills required. We choose these because they are considered more
difficult for machines than for humans [14].
1. Social skills: “This task requires social skills to complete.”
2. Creativity: “This task requires creativity to complete.”
3. Effort: “This task requires a great deal of time or effort to complete.”
4. Expertise: “It takes significant training or expertise to be qualified for this task.”
5. (Perceived) human ability: “I am confident in [my own/a qualified person’s] ability to complete

this task.” 1

Risk. Real-world tasks involve uncertainty and risk in accomplishing the task, so a rational decision
on delegation involves more than just cost and benefit. Delegation amounts to a bet: a choice
considering the probabilities of accomplishing the goal against the risks and costs of each agent [6].
Perkins et al. [37] define risk practically as a “probability of harm or loss,” finding that people rely
on automation less as the probability of mortality increases. Responsibility or accountability may
play a role if delegation is seen as a way to share blame [28, 43]. We thus decompose risk into three

1We flip this component in coherence analysis (Fig. 2c) so that higher lack of confidence in human ability
indicates higher difficulty.
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components: personal accountability for the task outcome; the uncertainty, or the probability of
errors; and the scope of impact, or cost or magnitude of those errors.
1. Accountability: “In the case of mistakes or failure on this task, someone needs to be held ac-

countable.”
2. Uncertainty: “A complex or unpredictable environment/situation is likely to cause this task to

fail.”
3. Impact: “Failure would result in a substantial negative impact on my life or the lives of others.”
Trust. Trust captures how people deal with risk or uncertainty. We use the definition of trust as
“the attitude that an agent will help achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability” [27]. Trust is generally regarded as the most salient factor in reliance
on automation [27, 28]. Here, we operationalize trust as a combination of perceived ability of the
AI agent, agent interpretability (ability to explain itself), and perceived value alignment. Each of
these corresponds to a component of trust in Lee and See [27]: performance, process, and purpose.
1. (Perceived) machine ability: “I trust the AI agent’s ability to reliably complete the task.”
2. Interpretability: “Understanding the reasons behind the AI agent’s actions is important for me

to trust the AI agent on this task (e.g., explanations are necessary).” 2

3. Value alignment: “I trust the AI agent’s actions to protect my interests and align with my values
for this task.”

Degree of delegation. We develop this framework of motivation, difficulty, risk, and trust to explain
human preferences of delegation. To measure human preferences, we split the degree of delegation
into the following four categories (refer to Supplementary Material for the wordings in the survey):
1. No AI assistance: the person does the task completely on their own (henceforth, “human only”).
2. The human leads and the AI assists: the person does the task mostly on their own, but the AI

offers recommendations or help when appropriate (e.g., human gets stuck or AI sees possible
mistakes) (henceforth, “machine in the loop”).

3. The AI leads and the human assists: the AI performs the task, but asks the person for sugges-
tions/confirmation when appropriate (henceforth, “human in the loop”).

4. Full AI automation: decisions and actions are made automatically by the AI once the task is
assigned; no human involvement (henceforth, “AI only”).

Fig. 1 presents our expectation of how motivation, difficulty, risk, and trust relate to delegability.
Motivation describes how invested someone is in the task, including how much effort they are willing
to expend, while difficulty determines the amount of effort the task requires. Therefore, we expect
difficulty and motivation to relate to each other: we hypothesize that people are more likely to
delegate tasks which they find difficult (or have low confidence in their abilities), and less likely
to delegate tasks which they are highly invested in. Risk reflects uncertainty and vulnerability in
performing a task, the situational conditions necessary for trust to be salient [27]. We thus expect
risk to moderate trust. Finally, we hypothesize that the correlation between components within
each factor should greater than that across different factors, i.e., factors should show coherence in
component measurements.

4 A Task Dataset and Survey Results

To evaluate our framework empirically, we build a database of diverse tasks covering settings rang-
ing from academic research to daily life, and develop and administer a survey to gather perceptions
of those tasks under our framework. We examine survey responses through both quantitative analy-
ses and qualitative case studies.

4.1 A Dataset of Tasks

We choose 100 tasks drawn from academic conferences, popular discussions in the media, well-
known occupations, and mundane tasks people encounter in their everyday lives. These tasks are
generally relevant to current AI research and discussion, and present challenging delegability deci-
sions with which to evaluate our framework. Example tasks can be found in §4.3. To additionally
balance the variety of tasks chosen, we categorize them as art, creative, business, civic, entertain-
ment, health, living, and social, and keep a minimum of 7 tasks of each (a task can belong to multiple

2We flip this component in coherence analysis (Fig. 2c and 2d) so that higher lack of need for interpretability
indicates higher trust.
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categories; refer to Supplementary Material for details). Ideally, the tasks would cover the entire au-
tomation “task space”; our task set is intended as a reasonable starting point.

Since some tasks, e.g., medical diagnosis, require expertise, and since motivation does not apply if
the subject does not personally perform the task, we develop two survey versions.
• Personal survey. We include all the four factors in Table 1 and ask participants “If you were to

do the given (above) task, what level of AI/machine assistance would you prefer?”
• Expert survey. We include only difficulty, risk, and trust, and ask participants “If you were to

ask someone to complete the given (above) task, what level of AI/machine assistance would you
prefer?”

Following a general explanation, our survey begins by asking subjects for basic demographic in-
formation. Subjects are then presented one randomly-selected task from our set. They evaluate the
task under each component in our framework (see Table 1) according to a five-point Likert scale.
Finally, subjects select the degree of delegation they would prefer for the task from the following
four choices: Full Automation, AI leads and human assists, Human leads and AI assists, or No AI
assistance. Note that subjects are not told which factor each question measures beyond the question
text itself, and can choose the degree of delegation independently of our framework.

We administer this 5-minute survey on Mechanical Turk. To improve the quality of surveys, we
require that participants have completed 200 HITs with at least a 99% acceptance rate and are from
the United States. We additionally add two attention check questions to ensure participants read
the survey carefully. Subjects are paid $0.80 upon completing the survey and passing the checks;
otherwise the data is discarded. We record 1000 survey responses: 500 each for the personal and
the expert versions, composed of 5 responses for each of the 100 tasks. Finally, we further discard
responses that are identical in each component (e.g., marking “Agree” for all components), resulting
in 495 and 497 responses for the personal and expert versions, respectively. This leaves 8 tasks with
4 responses rather than 5. We obtain a gender-balanced sample with 525 males, 463 females, and 4
identifying otherwise. The dataset is available at http://delegability.github.io.

4.2 Survey Results

In this section, we begin by examining the overall distribution of the delegability preferences, then
investigate the relation between components in our framework and the delegability labels.

Participants seldom choose “AI only” and prefer designs where humans play the leading role.
Participants labeled the delegability of tasks ranging from 1 (“Human only”) to 4 (“AI only”). Fig. 2a
presents the distribution. In both the personal and expert surveys, 4 (“AI only”) is seldom chosen.
Instead, both distributions peak at 2, indicating strong preferences towards machine-in-the-loop de-
signs. This result becomes even more striking when averaging the five responses received per task,
concentrating almost half the mass between 2 and 2.5 — again indicating a preference for machine-
in-the-loop designs. In fact, after averaging responses, we find that none of the 100 tasks yield an
overall preference for full automation (≥ 3.5). Taken together, these results imply that people prefer
humans to keep control over the vast majority of tasks, yet are also open to AI assistance.

If we view our surveys as a labeling exercise, the agreement between individuals is low but is
relatively higher in the expert survey than the personal survey: the Krippendorff’s α is 0.063 in
the personal survey and is 0.174 in the expert survey [19]. The lower agreement in the personal
survey is consistent with heterogeneity between individuals. Two of the most contentious personal
survey tasks were: “Cleaning your house” and “Breaking up with your romantic partner”.

Trust is most correlated with human preferences of automation. Consistent with our hypothesis
in Fig. 1, trust is generally positively correlated with delegability. Table 2 shows the component
correlations with the delegability labels. After Bonferroni correction, 5 out of the 11 components
are significantly correlated with the delegability label in the expert survey, while only 4 of the 14
components are in the personal survey. Trust takes the top two spots in both. Difficulty, the only
other significantly correlated factor after trust, is generally negatively correlated with delegability.
In particular, the creative and social skill requirements are the next highest correlations in both sur-
veys, suggesting specific skills may form a stronger basis for delegation to AI than more subjective
difficulty measures (e.g., self-confidence).

Next, we highlight three exceptions: 1) Contrary to our hypothesis, we did not find statistically
significant correlations between the risk or motivation factors and delegability after Bonferroni cor-
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Figure 2: Fig. 2a and 2b show that full automation is rarely preferred in our surveys. Fig. 2c and
2d examine correlations between components. We observe low coherence in trust and difficulty. In
particular, interpretability seems distinct from the other two trust components.

Factor Component Personal Expert

Motivation Utility -0.126 (†) N/A
Motivation Intrinsic motivation -0.104 (†) N/A
Motivation Goals NS N/A

Difficulty Social skills -0.303 (***) -0.294 (***)
Difficulty Creativity -0.223 (***) -0.290 (***)
Difficulty Human ability NS -0.160 (**)
Difficulty Effort required NS -0.124 (†)
Difficulty Expertise required NS -0.120 (†)

Risk Uncertainty NS -0.135 (†)
Risk Accountability NS -0.123 (†)
Risk Impact NS -0.106 (†)

Trust Machine ability 0.520 (***) 0.593 (***)
Trust Value alignment 0.481 (***) 0.522 (***)
Trust Process NS NS

Table 2: Pearson correlation of framework components with the delegabilty label for individual re-
sponses to the personal and expert surveys. p-values were computed by aggregating over individual
Likert ratings separately for the personal and expert surveys, resulting in 25 tests in total. Signifi-
cance after Bonferroni correction is indicated by *** for p < 0.001, ** for p < 0.01, * for p < 0.05,
and NS for p >= 0.05. Results that were p < 0.05 prior to correction are indicated by †.

rection. 2) The interpretability (process) component of trust is not correlated with delegability. 3)
Confidence in human ability (within the difficulty factor; lower confidence indicates higher diffi-
culty) is not correlated with delegability in the personal survey, but is actually negatively correlated
in the expert survey (the lower the confidence, the more delegable). This differs from the general
trend of rating more difficult tasks as less delegable, suggesting that people prefer experts to accept
AI assistance on low-confidence tasks, but perhaps are less willing to do so themselves.

Factors are generally “coherent”, but risk components have only weak correlation with trust
components. We next study the correlation between components in our framework. We focus
on the personal survey here because it has all four factors, but results are consistent in the expert
survey. Fig. 2c presents the average pairwise component correlations between the four factors: the
correlation along the diagonal is generally higher than the off-diagonal ones. This finding confirms
that factors are generally “coherent”, affirming our categorization of the components within them.

Comparing the factor relations to our expectation in Fig. 1 (see the correlation graph in the Supple-
mentary Material for detailed relations between components), we find that motivation and difficulty
are indeed correlated, most notably between self-confidence and intrinsic motivation in the personal
survey (ρ = 0.41, people enjoy doing what they are good at). However, contrary to our expectation,
components in risk have only weak connections with trust, while difficulty is correlated with trust
(through the social and creative skill requirements) and to risk in personal and expert surveys.

Coherence is lower in difficulty and trust than in risk and motivation. To investigate this, we zoom
into the correlation matrix in Fig. 2d to show individual components of trust. We observe inter-
pretability has little correlation with machine ability and negative correlation with value alignment,
suggesting that the need for explanation is independent of whether the machine is perceived as ca-
pable, and perhaps higher when machine is perceived as benign. In comparison, interpretability is
most strongly correlated with risk. In the personal survey, it is also connected to motivation through
utility and learning goals. Thus risky and important tasks, which people want to learn, tend to require
more interpretability; but this may not be tied to their willingness to delegate.
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Task Description Social Expertise Human Account- Impact Machine Interpret- Delegability
Skills (D) Req (D) Ability (D) ability (R) (R) Ability (T) ability (T)

Medical diagnosis: flu 3.4 4.2 4.6 4 4.2 3 4.2 2.4
Medical treatment planning: flu 3.6 3.6 4.4 4 3.4 3.6 3.8 2.4
Explaining diagnosis & treatment options
to a patient: flu

3.4 3.6 4.2 3.8 3.2 3.8 3.2 2.2

Medical diagnosis: depression 4.4 4.6 4.6 4.2 3.8 2.8 3.4 2.2
Medical treatment planning: depression 3.8 3.4 4.4 4.2 4.4 3 4 2
Explaining diagnosis & treatment options
to a patient: depression

4.4 4.4 4.2 4.4 4.4 2.2 4.4 1.6

Medical diagnosis: cancer 2.6 5 3.6 3.8 4.8 2.4 3.4 2
Medical treatment planning: cancer 3.6 4.6 4.8 4.4 4.8 2.4 3.8 1.6
Explaining diagnosis & treatment options
to a patient: cancer

4.4 4.4 4.2 4.2 4.6 2.4 2.6 1.4

New employee hiring decisions 4.4 3.6 3.8 3.8 3.8 2.4 4.4 2.2
Judging a defendant’s recidivism risk 3.8 4 4.4 4.4 4.6 2.4 3.6 1.8

Table 3: A case study of tasks from the expert survey. See full names of tasks in the supplementary
material. Note that we do not flip any component in these case study tables.

Task Description Social Expertise Human Account- Impact Intrinsic Machine Delegability
Skills (D) Req (D) Ability (D) ability (R) (R) (M) Ability (T)

Serving on jury duty 4.6 2.4 4.6 4.6 4.2 3.8 1.2 1.4
New employee hiring decisions 4 3.6 3.6 4.2 3 2.6 1.8 1.8
Reading bedtime stories to your child 4 2 4.4 2.6 1.8 4.8 3.2 1.8
Scheduling an important business meeting 3.6 2 4.4 3.2 3 2.6 3.6 3

Table 4: A case study of tasks from the personal survey. Refer to https://delegability.
github.io/table.html for live demo.

4.3 Case Studies

To further illustrate the operation of our delegability framework, we present averaged responses to
selected tasks from the expert survey in Table 3 and the personal survey in Table 4. For the expert
case studies, we examine responses to medical diagnosis, recidivism risk, and hiring. Next, we ob-
serve the effects of motivation on some personal tasks. Finally, some tasks such as hiring are suitable
for both experts and laypeople, allowing us to compare the personal and expert contexts. Though
clearly important, we observe trust alone cannot explain differences in delegability preferences.

Expert Survey Case Studies. The medical domain is often considered a promising area for AI, but
how open are patients to delegating different aspects of their healthcare to AI? We compare three
medical tasks (diagnosis, treatment, and explanation), each with three different illness contexts (the
flu, depression, and cancer). Intuitively, flu-related tasks are seen as the most delegable – even
approaching a delegability of 3 (human-in-the-loop) – while cancer is the least. Correspondingly,
the flu-related tasks are perceived as less difficult (lower social skill and expertise requirements,
higher confidence in the human expert), less risky (lower impact and accountability), and with higher
trust in machine ability. However, all except cancer explanation are nearest a delegability level of 2
(machine-in-the-loop): though human control is preferred, machine assistance is valued.

Fairness decision problems such as recidivism risk and employee hiring decisions are typically char-
acterized as requiring high transparency and accountability. From the responses, we see that these
tasks are both rated as difficult, risky, and with low degrees of trust in AI; in fact, they look similar
to the medical tasks under our framework. Accordingly, we again observe both tasks result in an
average preference for machine-in-loop designs.

Personal Survey Case Studies. To observe the role of motivation, we consider “Reading bedtime
stories to your child”, a machine-in-the-loop task, and “Scheduling an important business meeting
with several co-workers”, a human-in-the-loop task. The former is higher motivation, yet the latter
is higher risk. The tasks are otherwise similar. Here, motivation appears to be the deciding factor:
the former’s higher motivation makes it less delegable despite the lower risk.

Finally, we compare some personal-context tasks which are similar to the above expert-context case
studies. “Serving on jury duty: deciding if a defendant is innocent or guilty” is comparable to the
high-risk low-trust medical and recidivism tasks, and is also similarly rated one of the least dele-
gable tasks to AI. For the employee hiring task, respondents rated their self-confidence as near their
confidence in an expert. Upon directly comparing the other components more closely, we observe
higher accountability, lower trust, and slightly lower delegability levels in the personal evaluations.
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5 Concluding Discussion
In this work, we present first steps towards understanding human preferences in human-AI task
delegation decisions. We develop an intuitive framework of motivation, difficulty, risk, and trust,
which we hope will serve as a starting point for reasoning about delegation preferences across tasks.
We develop a survey to quantify human preferences, and validate the promise of such an empirical
approach through correlation analysis and case studies. Our findings show a preference for machine-
in-the-loop designs and a disinclination towards “AI Only”.

In developing this framework, our intent is not to suppress technology development, but rather to
provide an avenue for more effective human-centered automation. Human preferences regarding the
extent of autonomy, and the reasons and motivations behind these preferences, are an understudied
yet valuable source of information. There is a clear gap in methodologies for both understanding
and contextualizing preferences across tasks; it is this gap that we wish to address.

Implications. First, our finding of trust as the most salient factor behind delegation preferences
supports the community’s widespread interest in trust and reliance. We find negative correlations
between trust in machine abilities and the social and creative skill requirements. These are skills
commonly considered difficult for machines, hinting that directly measuring task characteristics
instead of human assessments of trust may also be an effective approach. We also note the low
correlation between desired interpretability and delegability to AI, demonstrating the complex and
intricate relation between interpretable machine learning and trust.

Moreover, our findings show that people do not prefer “AI only”, instead opting for machine-in-the-
loop designs. Interestingly, even for low-trust tasks such as cancer diagnosis or babysitting, people
are still receptive to the idea of a machine-in-the-loop assistant. We should explore paradigms that
let people maintain high-level control over tasks while leveraging machines as support, as in recent
work on clinical decision systems [46].

Limitations. Our framework does not fully explain delegability preferences: the highest measured
correlation is 0.59, and due to limited data, we do not explore higher-order feature interactions.
Additionally, human preferences are dynamic and survey results likely evolve over time. Neverthe-
less, mapping current perceptions enables tracking any future changes, providing a mechanism to
understand how basic changes in factors like machine ability manifest through trust and reliance.

Our exploratory survey methodology also has several limitations. We abstracted delegability deci-
sions and measured a limited number of factors, thus potentially overstating the importance of trust
and overlooking others that occur in real situations. For example, we did not consider situational
details like the trust in specific companies, or actual human or machine performance. Second, we
designed the survey to avoid biasing or requiring respondents to understand our framework concep-
tually. Training may improve subject calibration and agreement. We also recommend consideration
of individual baseline attitudes towards automation. Since each participant only filled out one sur-
vey, we were unable to determine if individuals were consistently biased towards AI, and what effect
this might have had on our measurements. In addition, we chose only four delegability categories,
ranging from “human only” to “AI only”. This was a deliberate abstraction choice to handle the wide
variety of tasks presented. However, since most responses fell into one of the two shared-control
categories, future studies may benefit from more fine-grained choices on shared control.

Finally, our empirical survey is based on participants on Mechanical Turk. We use a strict filter
and attention checks to guarantee quality, but this sample may not be representative of the general
population in the US, or of other populations with different cultural expectations.

Towards a Framework. In addition to resolving the above limitations, we specifically suggest two
characteristics for any framework addressing the task delegability question: 1) a characterization of
human preferences towards automation and machine control; and 2) a characterization of the task
space, enabling the generalization of task-specific findings to other domains.

In particular, generalization represents a significant challenge, especially when incorporating human
factors. For instance, it is unclear how to generalize from physicians interacting with AI for cancer
diagnosis to judges interacting with AI for recidivism prediction. While our approach maps tasks
to delegability preferences through a common set of task-automation perception factors and enables
directly comparing tasks with a quantifiable perception distance, its capability of generalization
requires further verification. Ultimately, we believe an effective quantification of human preferences
and task relations will prove invaluable for the community and the public as a whole.
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