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Abstract

Unsupervised image-to-image translation is a class of computer vision problems
which aims at modeling conditional distribution of images in the target domain,
given a set of unpaired images in the source and target domains. An image in the
source domain might have multiple representations in the target domain. Therefore,
ambiguity in modeling of the conditional distribution arises, specially when the
images in the source and target domains come from different modalities. Current
approaches mostly rely on simplifying assumptions to map both domains into a
shared-latent space. Consequently, they are only able to model the domain-invariant
information between the two modalities. These approaches usually fail to model
domain-specific information which has no representation in the target domain.
In this work, we propose an unsupervised image-to-image translation framework
which maximizes a domain-specific variational information bound and learns the
target domain-invariant representation of the two domain. The proposed framework
makes it possible to map a single source image into multiple images in the target
domain, utilizing several target domain-specific codes sampled randomly from the
prior distribution, or extracted from reference images.

1 Introduction

Image-to-image translation is the major goal for many computer vision problems, such as sketch
to photo-realistic image translation [25], style transfer [13], inpainting missing image regions [12],
colorization of grayscale images [11, 32], and super-resolution [18]. If corresponding image pairs
are available in both source and target domains, these problems can be studied in a supervised
setting. For years, researchers [22] have made great efforts to solve this problem employing classical
methods, such as superpixel-based segmentation [39]. More recentely, frameworks such as conditional
Generative Adversarial Networks (cGAN) [12], Style and Structure Generative Adversarial Network
(S2-GAN) [30], and VAE-GAN [17] are proposed to address the problem of supervised image-
to-image translation. However, in many real-world applications, collecting paired training data is
laborious and expensive [37]. Therefore, in many applications, there are only a few paired images
available or no paired images at all. In this case, only independent sets of images in each domain,
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Figure 1: (a) The photo-realistic image. (b) Translated image in the edge domain, using CycleGAN.
(c) Generated edges after Histogram Equalization to illustrate how photo-specific information are
encoded to satisfy cycle consistency.

with no correspondence in the other domain, should be deployed to learn the cross-domain image
translation task. Despite the difficulty of the unsupervised image-to-image translation, since there is
no paired samples guiding how an image should be translated into a corresponding image in the other
domain, it is still more desirable compared to the supervised setting due to the lack of paired images
and the convenience of collecting two independent image sets. As a result, in this paper, we focus on
the design of a framework for unsupervised image-to-image translation.

The key challenge in cross-domain image translation is learning the conditional distribution of images
in the target domain. In the unsupervised setting, this conditional distribution should be learned using
two independent image sets. Previous works in the literature mostly consider a shared-latent space, in
which they assume that images from two domains can be mapped into a low-dimensional shared-latent
space [37, 20]. However, this assumption does not hold when the two domains represent different
modalities, since some information in one modality might have no representation in the other modality.
For example, in the case of sketch to photo-realistic image translation, color and texture information
have no interpretable meaning in the sketch domain. In other words, each sketch can be mapped
into several photo-realistic images. Accordingly, learning a single domain-invariant latent space
with aforementioned assumption [37, 20, 24] prevents the model from capturing domain-specific
information. Therefore, a sketch can only be mapped into one of its corresponding photo-realistic
images. In addition, since the current unsupervised techniques are implemented mainly based on the
"cycle consistency" [20, 37], the translated image in the target domain may encode domain-specific
information of the source domain (Figure 1). The encoded information can then be utilized to recover
the source image again. This encoding can effectively degrade the performance and stability of the
training process.

To address this problem, we remove the shared-latent space assumption, and learn a domain-specific
space jointly with a domain-invariant space. Our proposed framework is based on Generative
Adversarial Networks and Variational Autoencoders (VAEs), and models the conditional distribution
of the target domain using VAE-GAN. Broadly speaking, two encoders map a source image into a pair
of domain-invariant and source domain-specific codes. The domain-invariant code in combination
with a target domain-specific code, sampled from a desired distribution, is fed to a generator which
translates them into the corresponding target domain image. To reconstruct the source image at the
end of the cycle, the extracted source domain-specific code is passed through a domain-specific path
to the backward path from translated target domain image.

In order to learn two distinct codes for the shared and domain-specific information, we train the
network to extract two distinct domain-specific and domain-invariant codes. The former is learned
by maximizing its mutual information with the source domain while simultaneously we minimize
the mutual information between this code and the translated image in the target domain. The mutual
information maximization may also result in the domain-specific code to represent an interpretable
representation of the domain-specific information [6]. These loss terms are crucial in the unsupervised
framework, since domain-invariant information may also go through the domain-specific path to
satisfy the cycle consistency in the backward path.

In this paper we extend CycleGAN [37] to learn a domain-specific code for each modality, through
domain-specific variational information bound maximization, in addition to a domain-invariant
code. Then, based on the proposed domain-specific learning scheme, we introduce a framework for
one-to-many cross-domain image-to-image translation in an unsupervised setting.
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(a) X → Y → X cycle (b) Y → X → Y cycle

Figure 2: Proposed framework for unsupervised image-to-image translation.

2 Related Works

In the computer vision literature, image generation problem is tackled using autoregressive models
[21, 29], restricted Boltzmann machines [26], and autoencoders [10]. Recently, generative techniques
are proposed for image translation tasks. Models such as GANs [7, 34] and VAEs [23, 15] achieve
impressive results in image generation. They are also utilized in conditional setting [12, 38] to address
the image-to-image translation problem. However, in the prior research, relatively less attention is
given to the unsupervised setting [20, 37, 4].

Many state-of-the-art unsupervised image-to-image translation frameworks are developed based on
the cycle-consistency constraint [37]. Liu et al. [20] showed that learning a shared-latent space
between the images in source and target domains implies the cycle-consistency. The cycle-consistency
constraint assumes that the source image can be reconstructed from the generated image, in the
target domain, without any extra domain-specific information [20, 37]. From our experience, this
assumption severely constrains the network and degrades the performance and stability of the
training process, in the case of learning the translation between different modalities. In addition, this
assumption limits the diversity of generated images by the framework, i.e., the network associates
a single target image with each source image. To tackle this problem, some prior research attempt
to map a single image into multiple images in the target domain in a supervised setting [5, 3]. This
problem is also addressed in [2] in an unsupervised setting. However, they have not considered any
mechanisms to force their auxiliary latent variables to represent only the domain-specific information.

In this work, in contrast, we aim to learn distinct domain-specific and domain-invariant latent spaces
in an unsupervised setting. The learned domain-specific code is supposed to represent the properties
of the source image which have no representation in the target domain. To this end, we train our
network by maximization of a domain-specific variational information to learn a domain-specific
space.

3 Framework and Formulation

Our framework, as illustrated in Figure 2, is developed based on GAN [30] and VAE-GAN [17], and
includes two generative adversarial networks; {Gx, Dx} and {Gy, Dy}. The encoder-generators,
{Exd, Gx} and {Eyd, Gy}, also constitute two VAEs. Inspired by CycleGAN model [37], we trained
our network in two cycles; X → Y → X and Y → X → Y , where X and Y represent the source and
target domains, respectively.1 Each cycle consists of forward and backward paths. In each forward
path, we translate an image from the input domain into its corresponding image in the output domain.
In the backward path, we remap the generated image into the input domain and reconstruct the input
image. In our formulation, rather than learning a single shared-latent space between the two domains,
we propose to decompose the latent code, z, into two parts: c, which is the domain-invariant code
between the two domains, and vi, i = {x, y}, which is the domain-specific code.

During the forward path in X → Y → X cycle, we simultaneously train two encoders, Exc and
Exd, to map data samples from the input domain, X , into a latent representation, z. The input
domain-invariant encoder, Exc, maps the input image, x ∈ X , into the input domain-invariant
code, c1. The input domain-specific encoder, Exd, maps x into the input domain-specific code, vx1.

1For simplicity, in the remainder of the paper, for each cycle, we use terms input domain and output domain.
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Then, the domain-invariant code, c1, and a randomly sampled output domain-specific code, vy1,
are fed to the output generator (decoder), Gy, to generate the corresponding representation of the
input image, yg = Gy(c1, vy1), in the output domain Y . Since in X → Y → X cycle the output
domain-specific information is not available during the training phase, a prior, p(vy), is imposed over
the domain-specific distribution which is selected as a unit normal distribution N (0, I). Here, index
1 in the codes’ subscripts refers to the first cycle X → Y → X . We use the same notation for all the
latent codes in the reminder of the paper.

The output discriminator, Dy, is employed to enforce the translated images, yg, resemble images in
the output domain Y . The translated images should not be distinguishable from the real samples in Y .
Therefore, we apply the adversarial loss [30] which is given by:

L1
GAN = Ey∼p(y) log[Dy(y)] + E(c1,vy1)∼p(c1,vy1) log[1−Dy(Gy(c1, vy1))]. (1)

Note that the domain-specific encoder Exd outputs mean and variance vectors (µvx1, σ
2
vx1) =

Exd(x), which represents the distribution of the domain-specific code vx1 given by qx(vx1|x) =
N (vx1|µvx1, diag(σ2

vx1)). Similar to the previous works on VAE [15], we assume that the domain-
specific components of vx are conditionally independent and Gaussian with unit variance. We utilize
reparametrization trick [15] to train the VAE-GAN using back-propagation. We define the variational
loss for the domain-specific VAE as follows:

L1
V AE = −DKL[qx(vx1|x), p(vx)] + Evx1∼q(vx1|x)[log p(x|vx1)]. (2)

where the Kullback–Leibler (DKL) divergence term is a measure of how the distribution of domain-
specific code, vx, diverges from the prior distribution. The conditional distribution p(x|vx1) is
modeled as Laplacian distribution, and therefore, minimizing the negative log-likelihood term is
equivalent to the absolute distance between the input and its reconstruction.

In the backward path, the output domain-invariant encoder, Eyc, and the output domain-specific
encoder, Eyd, map the generated image into the reconstructed domain-invariant code, ĉ1, and the
reconstructed domain-specific code, v̂y1, respectively. The domain-specific encoder, Eyd, outputs
mean and variance vectors (µvy1, σ

2
vy1) = Eyd(Gy(c1, vy1)) which represents the distribution

of the domain-specific code, vy1, given by qy(vy1|y) = N (vy1|µvy1, diag(σ2
vy1)). Finally, the

reconstructed input, x̂, is generated by the output generator, Gx, with ĉ1 and vx1 as its inputs. Here,
vx1 is sampled from its distribution, N (µvx1, diag(σ

2
vx1)), where (µvx1, σ

2
vx1) is the output of Exd

in the forward path. We enforce a reconstruction criteria to force ĉ1, v̂y1 and x̂ to be the reconstruction
of c1, vy1, and x, respectively. To this end, the reconstruction loss is defined as follows:

L1
r = Ex∼p(x),vy1∼N (0,I)[λ1||x̂− x||2 + λ2||v̂y1 − vy1||2 + λ3||ĉ1 − c1||2], (3)

where λ1, λ2, and λ3 are the hyper-parameters to control the weight of each term in the loss function.

4 Domain-specific Variational Information bound

In the proposed model, we decompose the latent space, z, into the domain-invariant and domain-
specific codes. As it is mentioned in the previous section, the domain-invariant code should only
capture the information shared between the two modalities, while the domain-specific code represents
the information which has no interpretation in the output domain. Otherwise, all the information
can go through the domain-specific path and satisfy the cycle-consistency property of the network
(Ex∼p(x)||x̂ − x||2 → 0 and Ey∼p(y)||ŷ − y||2 → 0). In this trivial solution, the generator, Gy,
can translate an input domain image into the output domain image that does not correspond to the
input image, while satisfying the discriminator Dy in terms of resembling the images in Y . Figure 7
(second row) presents images generated by this trivial solution.

Here, we propose an unsupervised method to learn the domain-specific information of the source
data distribution which has minimum information about the target domain. To learn the source
domain-specific code, vx, we propose to minimize the mutual information between vx and the target
domain distribution, while simultaneously, we maximize the mutual information between vx and
the source domain distribution. Similarly, the target domain-specific code vy is learned for target
domain Y . In other words, to learn the source and target domain specific codes vx and vy , we should
minimize the following loss function:

Lint =
(
I(y, vx; θ)− βI(x, vx; θ)

)
+
(
I(x, vy; θ)− βI(y, vy; θ)

)
, (4)
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where θ represents the model parameters. To translate Lint to an implementable loss function, we
define the following two loss functions:

L1
int = I(x, v̂y1 ; θ)− βI(x, vx1

; θ), L2
int = I(y, v̂x2

; θ)− βI(y, vy2 ; θ), (5)

where L1
int and L2

int are implemented in cycles X → Y → X and Y → X → Y , respectively.

Instead of minimizing L1
int, or similarly L2

int, we minimize their variational upper bounds, which
we refer to as domain-specific variational information bounds. Zhao et al. [35] illustrated that using
KL-divergance in VAEs results in information preference problem, in which the mutual information
between the latent code and the input becomes vanishingly small, while training the network using
only reconstruction loss, with no KL divergence term, maximizes the mutual information. However,
some other types of divergences, such as MMD and Stein Variational Gradient, do not suffer from
this problem. Consequently, in this paper, for L1

int, to maximize I(x, vx1 ; θ) we can replace the
first term in (2) with Maximum-Mean Discrepancy (MMD) [35], which always prefers to maximize
mutual information between x and vx1

. The MMD is a framework which utilizes all of the moments
to quantify the distance between two distributions. It could be implemented using the kernel trick as
follows:

MMD[p(z) ‖ q(z)] = Ep(z),p(z′)[k(z, z
′)] + Eq(z),q(z′)[k(z, z

′)]− 2Ep(z),q(z′)[k(z, z
′)], (6)

where k(z, z′) is any universal positive definite kernel, such as Gaussian k(z, z′) = e−
‖z−z′‖

2σ2 .
Consequently, we rewrite the VAE objective in Equation (2) as follows:

L1
V AE =MMD[p(vx1

) ‖ q(vx1
)] + Evx1∼q(vx1|x)[log p(x|vx1)]. (7)

Following the method described in [1], to minimize the first term of L1
int in (5), we define an

upper-bound for the first term as:

I(x, v̂y1 ; θ) ≤
∫
dv̂y1dxp(x)p(v̂y1 |x) log

p(v̂y1 |x)
r(v̂y1)

= L1. (8)

Since p(v̂y1) is tractable but difficult to compute, we define variational approximations to it as r(v̂y1).
Similar to [1], r(z) is defined as a fixed dim-dimensional spherical Gaussian, r(z) = N(z|0, I),
where dim is the dimension of vy1. This upper-bound in combination with the MMD forms a domain-
specific variational information bound. Note that MMD does not optimize an upper-bound to the
negative log likelihood directly, but it guarantees the mutual information to be maximized and we can
expect a high log likelihood performance [35]. To translate this upper-bound, L1, to an implementable
loss function in the model, we use the following empirical data distribution approximation:

p(x) ≈ 1

N

N∑
n=1

δxn(x). (9)

Therefore, the upper bound can be approximated as:

L1 ≈ 1

N

N∑
n=1

∫
dv̂y1p(v̂y1 |xn) log

p(v̂y1 |xn)
r(v̂y1)

. (10)

Since v̂y1 = f(x, vy1) and vy1 ∼ N (0, I), the implementable upper-bound, L, can be approximated
as follows:

L1 ≈ 1

N

N∑
n=1

Evy1∼N (0,I)DKL[p(v̂y1 |xn)||r(v̂y1)]. (11)

As illustrated in Figure 2b, we train the Y → X → Y cycle starting from an image y ∈ Y . All the
components in this cycle share weights with the corresponding components in X → Y → X cycle.
Similar losses, L2, L2

r , L2
V AE , and L2

GAN , can be defined for this cycle. The overall loss for the
network is defined as:

Loss =

2∑
i=1

αi1L
i + αi2Lir + αi3LiGAN + αi4LiV AE . (12)

5



(a) Edges↔Handbags (b) Edges↔Shoes

Figure 3: Qualitative comparison of our proposed method with BicycleGAN, CycleGAN and UNIT.
The proposed framework is able to generate diverse realistic outputs. However, it does not require
any supervisions during its training phase.

5 Implementation

We adopt the architecture for our common latent encoder, generator, and discriminator networks
from Zhu and Park et al. [37]. The domain-invariant encoders includes two stride-2 convolutions,
and three residual blocks [8]. The generators consist of three residual blocks and two transposed
convolutions with stride-2. The domain-specific encoders share the first two convolution layers with
their corresponding domain-invariant encoders, followed by five stride-2 convolutions. Since the
spatial size of the domain-specific codes do not match with their corresponding domain-invariant
codes, we tile them to the same size as the domain-invariant codes, and then, concatenate them to
create the generators’ inputs. For the discriminator networks we use 30× 30 PatchGAN networks
[19, 12], which classifies whether 30× 30 overlapping image patches are real or fake. We use Adam
optimizer [14] for online optimization with the learning rate of 0.0002. For reconstruction loss in (3),
we set λ1 = 10 and λ2 = λ3 = 1. The values of α2 and α3 in (12) are set to 1, and the α4

α1
= β = 1.

Finally, regarding the kernel parameter σ in (6), as discussed in [35], MMD is fairly robust to this
parameter selection, and using 2

dim is a practical value in most scenarios, where dim is the dimension
of vx1.

6 Experiments

Our experiments aim to show that an interpretable representation can be learned by the domain-
specific variational information bound maximization. Visual results on translation task show how
domain-specific code can alter the style of generated images in a new domain. We compare our
method against baselines both qualitatively and quantitatively.

6.1 Qualitative Evaluation

We use two datasets for qualitative comparison, edges↔ handbags [36] and edges↔ shoes [31].
Figures 3a and 3b represent the comparison between the proposed framework and baseline image-to-
image translation algorithms: CycleGAN [37], UNIT [20], and BicycleGAN [38]. Our framework,
similar to the BicycleGAN, can be utilized to generate multiple realistic images for a single input,
while does not require any supervision. In contrast, CycleGAN and UNIT learn one-to-one mappings
as they learn only one domain-invariant latent code between the two modalities. From our experience,
training CycleGAN and UNIT on edges ↔ photos datasets is very unstable and sensitive to the
parameters. Figure 1 illustrates how CycleGAN encodes information about textures and colors in the
generated image in the edge domain. This information encoding enables the discriminator to easily
distinguish the fake generated samples from the real ones which results in unstability in the training
of the generators.

Three other datasets, namely architectural labels ↔ photos from the CMP Facade database [28],
and CUHK Face Sketch Dataset (CUFS) [27] are employed for more qualitative evaluation. The
image-to-image translation results for the proposed framework are presented in Figure 4d, and 4c
for these datasets, respectively. Our method successfully captures domain-specific properties of
the target domain. Therefore, we are able to generate diverse images from a single input sample.
More results for edges↔ shoes and edges↔ handbags datasets are presented in Figures 4a and 4b,
respectively. These figures present one-to-many image translation when different domain-specific
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(a) Edges↔Shoes. (b) Edges↔Handbags

(c) Sketch↔Photo-realistic (d) Label↔Facade photo (e) Photos↔Edges

Figure 4: The results of our framework on different datasets.

Figure 5: Failure cases, where some domain-specific codes do not result in well-defined styles.

codes are deployed. The results for the backward path for edges↔ handbags and edges↔ shoes are
also presented in Figure 4e. Since there is no extra information in the edge domain, the generated
edges are quite similar to each other despite the value of edge domain-specific code.

Using the learned domain-specific code, we can transfer domain-specific properties from a reference
image in the output domain to the generated image. To this end, instead of sampling from the
distribution of output domain-specific code, we can use a domain-specific code extracted from a
reference image in the output domain. To this end, the reference image is fed to the output domain-
specific encoder to extract its domain-specific code. The extracted code can be used for image
translation guided by the reference image. Figures 6 show the results using domain-specific codes
extracted from multiple reference images to translate edges into realistic photos. Finally, Figure 5
illustrates some failure cases, where some domain-specific codes do not result in well-defined styles.

6.2 Quantitative Evaluation

Table 1 presents the quantitative comparison between the proposed framework and three state-of-the-
art models. Similar to BicycleGAN [38], we perform a quantitative analysis of the diversity using
Learned Perceptual Image Patch Similarity (LPIPS) metric [33]. The LPIPS distance is calculated
as the average distance between 2000 pairs of randomly generated output images, in deep feature
space of a pre-trained AlexNet [16]. Diversity scores for different techniques using the LPIPS metric
are summarized in Table 1. Note that the diversity score is not defined for one-to-one frameworks,
e.g., CycleGAN and UNIT. Previous findings showed that these models are not able to generate large
output variation, even by noise injection [12, 38]. The diversity scores of our proposed framework
are close to the BicycleGAN, while we do not have any supervision during the training phase.

Generating unnatural images usually results in a high diversity score. Therefore, to investigate
whether the variation of generated images is meaningful, we need to evaluate the visual realism
of the generated samples as well. As proposed in [32, 37], the “fooling" rate of human subjects,
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