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Abstract

Analyzing the structure and function of proteins is a key part of understanding
biology at the molecular and cellular level. In addition, a major engineering
challenge is to design new proteins in a principled and methodical way. Current
computational modeling methods for protein design are slow and often require hu-
man oversight and intervention. Here, we apply Generative Adversarial Networks
(GANs) to the task of generating protein structures, toward application in fast de
novo protein design. We encode protein structures in terms of pairwise distances
between ↵-carbons on the protein backbone, which eliminates the need for the gen-
erative model to learn translational and rotational symmetries. We then introduce a
convex formulation of corruption-robust 3D structure recovery to fold the protein
structures from generated pairwise distance maps, and solve these problems using
the Alternating Direction Method of Multipliers. We test the effectiveness of our
models by predicting completions of corrupted protein structures and show that the
method is capable of quickly producing structurally plausible solutions.

1 Introduction

The ability to determine and design protein structures has deepened our understanding of biology.
Advancements in computational modeling methods have led to remarkable outcomes in protein
design including the development of new therapies [1, 2], enzymes [3, 4, 5], small-molecule binders
[6], and biosensors [7]. These efforts are largely limited to modifying naturally occurring, or “native,”
proteins. To fully control the structure and function of engineered proteins, it is ideal in practice to
create proteins de novo [8]. A fundamental question is discovering new, non-native folds or structural
elements that can be used for designing these novel proteins. The protein design problem remains a
major engineering challenge because the current design process relies heavily on heuristics, requiring
subjective expertise to negotiate pitfalls that result from optimizing imperfect scoring functions.

We demonstrate the potential of deep generative modeling for fast generation of new, viable protein
structures for use in protein design applications. We use Generative Adversarial Networks (GANs)
to generate novel protein structures [9, 10] and use our trained models to predict missing sections
of corrupted protein structures. We use a data representation restricted to structural information–
pairwise distances of ↵-carbons on the protein backbone. Despite this reduced representation, our
method successfully learns to generate new structures and, importantly, can be used to infer solutions
for completing corrupted structures. We use the Alternating Direction Method of Multipliers (ADMM)
algorithm to “fold” 2D pairwise distances into 3D Cartesian coordinates [11]. The algorithm presented
is a new method to do 3D structure generation and recovery using deep generative models, which is
invariant to transformations in the Lie group of rotations and translations (SE(3)).

This paper is a step toward learning the protein design and folding process. Ultimately, our goal is to
extend the generative model described, with subsequent steps of reinforcement learning or imitation
learning to produce realistic protein structure at atomic resolution.
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Figure 1: a) Data representation. Proteins are made up of chains of amino acids and have
secondary structure features such as alpha helices and beta sheets. We represent protein structures
using pairwise distances in angstroms between the ↵-carbons on the protein backbone. b) Pipeline.
GAN generates a pairwise distance matrix, which is “folded” into a 3D structure by ADMM to
get ↵-carbon coordinate positions; a fast ‘trace” script then traces a reasonable protein backbone
through the ↵-carbon positions. We also fold structures directly from pairwise distances using Rosetta
(fragment sampling subject to distance constraints) c) Model. DCGAN model architecture used for
generating pairwise distance maps. The generator takes in random vector z ⇠ N (0, I) and outputs a
fake distance map to fool the discriminator. The discriminator predicts whether inputs are real (data
samples) or fake (generator output).

The main contributions of this paper are (i) a generative model of proteins that estimates the distribu-
tion of their structures in a way that is invariant to rotational and translational symmetry and (ii) a
convex formulation for the resulting reconstruction problem that we show scales to large problem
instances.

2 Background

2.1 Protein structure and design

Proteins are macromolecules made up of chains of amino acids, with side-chain groups branching off
a connected backbone (Figure 1a). Interactions between the side-chains, the protein backbone, and
the environment give rise to local secondary structure elements – such as helices, strands, or random
coils – and to the ultimate 3D structure of the protein. The large number of possible conformations of
the peptide backbone, as well as the requirement to satisfy correct chemical bonding geometry and
interactions, makes the protein structural modeling problem challenging.

In this paper, we study sequence-agnostic structure generation; this is different from the task of protein
structure prediction, in which the structure of the protein is predicted given the amino acid sequence.
Although protein structures are determined by their primary amino acid sequence, in recent years,
it has become more apparent that protein structures and protein-protein interfaces conform largely
to structural motifs [12]. A well known example is helical coiled-coils, where the angles between
two interacting and sequence diverse helices fall within a range to facilitate knobs-into-holes packing
[13]. These observations emphasize the importance of understanding sequence agnostic backbone
behaviors. Here, our goal is to try to sample from the distribution of viable protein backbones.

The conventional protein design process starts with designing a peptide backbone structure, which
can either be derived from a native protein or artificially created (i.e. de novo design); this is followed
by finding the sequence of amino acids or side-chain residues which will fold into the backbone
structure. Often, a structure is only partially modified such that one or more segments are manipulated
while the rest of the structure is kept intact; this is referred to as a loop modeling or loop closure
problem. Ensuring that the resulting structure has a fully connected and plausible backbone can be
difficult.
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The current state-of-the-art method for designing protein structures is the Rosetta modeling suite.
Guided by a heuristic energy function, Rosetta samples native protein fragments to fold backbones
and can optimize over amino acid types and orientations to determine the most likely amino acid
sequence corresponding to the designed backbone [14]. For loop modeling problems, Rosetta
supplements fragment sampling with closure algorithms such as Cyclic Coordinate Descent (CCD)
[15] and Kinematic Closure (KIC) [16] to ensure backbone connectivity. Hallmarks of the Rosetta
methodology are that it has a highly refined energy function to guide sampling and its model building
processes are intuitive and flexible. The main drawbacks of this method are that the fragment sampling
step is very slow and the method requires extensive sampling steps before arriving at reasonable
solutions. We suggest a fast method for loop modeling using a generative model, which takes into
account the global structure of the protein.

2.2 Generative models

Generative Adversarial Networks (GANs) are a powerful class of models for generating new data
samples that match the statistics of an input dataset [9]. GANs are made up of a generator network
which seeks to produce realistic data and a discriminator network which tries to distinguish fake
samples produced by the generator from real samples from the input dataset.

Given data x and random vector z ⇠ N (0, I), the discriminator D and generator G each seek to
maximize the following objectives

max

D
E
x⇠p data(x)[logD(x)] + E

z⇠pz(z)[log(1� (D(G(z))))]

max

G
E
z⇠pz(z)[log(D(G(z)))]

(1)

We use a deep convolutional generative adversarial network (DCGANs) as our generative model in
this paper [10].

2.3 Related Work

Other than Rosetta-based fragment sampling methods, related work on sequence-agnostic generative
models for protein backbones include TorusDBN [17] and FB5-HMM [18] which are Hidden
Markov Models (HMMs) trained to generate local backbone torsion angles and ↵-carbon coordinate
placement, respectively. We baseline our work with these methods.

Indirectly related papers use neural network models to predict properties of and generate new small
molecules and protein/DNA sequences. Some of these use neural networks on graph or string
representations of small molecules [19, 20, 21, 22]. A recent paper uses deep neural networks to
predict amino acid sequence for a corresponding structure [23]. Another result uses GANs to generate
DNA sequences [24].

Structure prediction methods include residue coevolution-based structure prediction [25, 26] and
recent work on neural network based methods [27]. These approaches assume the underlying
amino-acid sequence is known.

We use ADMM to infer 3D coordinates from pairwise distances; similarly, others have used a
semidefinite program (SDP) to infer protein structure from nuclear magnetic resonance (NMR) data,
[28], using semidefinite facial reduction to reduce the size of the SDP.

The algorithm presented in this paper is a new method to do 3D structure generation and recovery
using deep generative models in a manner invariant to transformations in SE(3). This method works
because of the fixed order of the peptide chain. Current methods for 3D structure generation are not
SE(3) invariant. A representative example is [29] who use GANs to produce structures in 3D voxel
space; we baseline our method with this model.

3 Methods

3.1 Dataset and map generation

An overview of our method is shown in Figure 1b. We use data from the Protein Data Bank [30],
a repository of experimentally determined structures available on-line. Although full-atom, high
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resolution structures are available for use, we sought a representation of protein structure that would
eliminate the need for explicitly encoding SE(3) invariance of 3D structures. We chose to encode 3D
structure as 2D pairwise distances between ↵-carbons on the protein backbone. This representation
does not preserve information about the protein sequence (side chains) or the torsion angles of the
polypeptide backbone, but preserves enough information to allow for structure recovery. We refer
henceforth to these pairwise ↵-carbon distance matrices as "maps." Note that the maps preserve the
order of the peptide chain from N- to C- terminus and are SE(3) invariant representations of the 3D
structure by construction.

To minimize structural homology between the GAN training data and the test data, we separated train
and test structures by SCOP (Structural Classification of Proteins) fold type. We include an exact
list of train and test set PDB IDs in the supplementary material. Note that the GAN does not require
a train/test split, but our subsequent corruption recovery experiments do. To create our datasets,
we extract non-overlapping fragments of lengths 16, 64, and 128 from chain ‘A’ for each protein
structure starting at the first residue and calculate the pairwise distance matrices from the ↵-carbon
coordinate positions. Importantly, the inputs to the model are not all independently folded domains,
but include fragments. We made this choice because we were unable to stably train a generative
model for arbitrary length input structures. Our model for the scope of this paper is not necessarily
learning protein structures which will fold, but rather learning building block features that define
secondary and tertiary structural elements.

We generated 16-, 64-, and 128-residue maps by training GANs on the corresponding maps in our
dataset. The model architecture is represented in Figure 1c. Experiment details are given in the
supplementary material, Section A.1.

3.2 Folding generated maps

After generating pairwise distance maps, we must recover or “fold” the corresponding 3D structure.
We tested two methods for folding generated maps. The first is using Rosetta’s optimization toolkit to
find a low-energy structure via fragment sampling, given distance constraints with slack. In practice,
this takes several minutes to fold small structures of less than 100 residues because of the fragment
and rotamer sampling steps (Figure S1a). This is is not a scalable method for folding and evaluating
many structures; therefore we sought another, faster way to reconstruct 3D protein structure via the
Alternating Direction Method of Multipliers (ADMM) algorithm [11].

3.2.1 ADMM

The task of determining 3D cartesian coordinates given pairwise distance measurements is already
well understood and has a natural formulation as a convex problem [31]. Given m coordinates
[a1, a2, . . . am] = A 2 Rn⇥m, we form the Gram matrix G = A

T
A 2 Sm

+ . Note that G is
symmetric, positive-semidefinite with rank at most n. We want to recover A given pairwise distance
measurements D, with dij = kai � ajk2. Since gij = a

T
i aj and d

2
ij = gii + gjj � 2gij , we can find

G by solving an SDP over the positive semidefinite cone.

min

G,⌘
� k⌘k1 +

1

2

mX

i=1,j=1

(gii + gjj � 2gij + ⌘ij � d

2
ij)

2

subject to G 2 Sn
+

(2)

where we have allowed a slack term ⌘ on each distance measurement, whose `1 norm is penalized,
with weight � 2 R. This slack term allows the model to be robust to sparse corruptions of distance
measurements. This penalty is common in corruption-robust modeling approaches and has theoretical
guarantees in other applications like Robust Principal Components Analysis [32]. We do not address
such theoretical guarantees in this work but demonstrate its empirical properties in the supplement
Section A.2.

While this optimization problem can be solved quickly using SDP solvers for systems where n

is small, the runtime of traditional solvers is quadratic in n and renders large structure recovery
problems out of reach. We found that indirect solvers like SCS were not able to handle problems
with n > 115 (Figure S1b) [33, 34].
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Figure 2: a) Generated pairwise distance maps for the 64-residue model, along with correspond-
ing nearest neighbors (NNs) by `2 distance in training dataset and maps after ADMM coordinate
recovery, subsequent ↵-carbon retrace step (CA retrace), and coordinate recovery by Rosetta fragment
sampling. b) Distribution of `2 map errors after coordinate recovery for generated maps (n = 1000).
c) Distribution of ↵-carbon rigid body alignment errors between folding methods for generated maps
(n = 1000). d) Mean `2 map errors after coordinate recovery for generated and real maps vs. protein
length e) Mean ↵-carbon rigid body alignment errors vs. protein length (n = 64 per data point).

Hence, we use ADMM which we found in practice converges to the correct solution quickly (Figure
S1c). ADMM is a combination of dual ascent with decomposition and the method of multipliers. We
write a modified optimization problem as

min

G,Z,⌘
� k⌘k1 +

1

2

0

@
mX

i=1,j=1

(gii + gjj � 2gij + ⌘ij � d

2
ij)

2

1

A
+ {Z 2 Sm

+ }

subject to G� Z = 0

(3)

Now we decompose the problem into iterative updates over variables G, Z, and U as

Gk+1, ⌘k+1 = argmin
G,⌘

[ � k⌘k1+
1

2

mX

i=1,j=1

(gii + gjj � 2gij + ⌘ij � d

2
ij)

2
+

⇢

2

kG� Zk + Ukk22 ]

Zk+1 =⇧Sn
+
(Gk+1 + Uk)

Uk+1 = Uk +Gk+1 � Zk+1

(4)
with augmented Lagrangian penalty ⇢ > 0. The update for Z is simply the projection onto the set
of symmetric positive semidefinite matrices of rank n. We find Gk and ⌘k by several iterations of
gradient descent. After convergence, coordinates A can be recovered from G via SVD. Note that
this algorithm is generally applicable to any problem for structure recovery from pairwise distance
measurements, not only for protein structures. In practice, this algorithm is fairly robust to corruption
of data (Section A.2).

Since our data representation only includes pairwise distances between ↵-carbons, we need a fast
method to recover the entire protein backbone given the ↵-carbon coordinates outputted by ADMM.
To do this, we use Rosetta to do local fragment sampling for every five carbons, constraining the
original placement of the carbons. The backbone is joined by selecting the middle residue for each
carbon 5-mer. This is followed by a short design procedure which finds a low-energy sequence for
the designed backbone. This is the “↵-carbon trace” block shown in Figure 1b. Unlike running the
full Rosetta protocol (dashed line, Figure 1b), this is a short procedure that runs in no more than a
few minutes for large structures (Figure S1d).

The benefit of this procedure is that we recover realistic protein structures that adhere to the ↵-carbon
placement determined by ADMM, while only sampling 5-mers and not all native fragments; hence,
the procedure runs an order of magnitude faster than the Rosetta protocol described above. The
primary drawback is that the ADMM procedure cannot always correct for local errors in secondary
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Figure 3: Examples of real 64-residue fragments (a) from the training dataset versus generated
64-residue fragments (b-f). b) GAN-generated maps folded subject to ↵-carbon distance constraints
using Rosetta for fragment sampling. c) GAN-generated maps folded using ADMM and ↵-carbon
trace script.d) Full-atom GAN-generated maps folded using ADMM and ↵-carbon trace script. e)
Structures from �, ,! angles generated by torsion GAN baseline with idealized backbone bond
lengths and angles [35]. f) Structures generated by sampling from TorusDBN without sequence prior
[17]. g) Structures generated by sampling ↵-carbon traces from FB5-HMM without sequence prior
and recovering full atom structure via Rosetta fragment sampling [18]. 3D GAN voxel output shown
in Figure S8 [29].

structure (such as deviations from helix or sheet structure), while the Rosetta sampling procedure
usually guarantees correct local structure.

4 Experiments

4.1 Generating protein structures

We generate 16-, 64-, and 128-residue maps and then fold them using the ADMM and Rosetta proto-
cols above. Information on model architectures and training is given in detail in the supplementary
material, Section A.1.

We compare our method for structure generation to the following baselines: Hidden Markov Model
(HMM) based methods TorusDBN [17] and FB5-HMM [18], a multi-scale torsion angle GAN,
3DGAN [29], and a full-atom GAN (2D pairwise distance maps for full-atom peptide backbones).
Descriptions of these baselines are given in the supplement Section A.3.

4.1.1 Results

Generated maps from our trained 64- and 128-residue models are shown in Figure 2a and Figure S3a,
alongside nearest neighbor maps from the training set. We found that generated maps were highly
variable and similar but not identical to real data, suggesting that the GAN is in fact generating new
maps and is not memorizing the training data.

We fold structures in two different ways. First, we use Rosetta to do fragment sampling subject to the
generated ↵-carbon distance constraints. In practice, this gives us a 3D structure with correct peptide
backbone geometry that adheres to the generated constraints. Second, we use ADMM to find 3D
↵-carbon placement that satisfies the generated constraints; we then use the ↵-carbon trace script
(described in Section 3.2.1) to trace an idealized peptide backbone geometry through the ↵-carbons.

In Figure 2b, we show the distribution of mean `2 ↵-carbon map errors due to reconstruction via
ADMM, the ↵-carbon retrace step, and fragment sampling subject to distance constraints by Rosetta.
The errors are smaller than those corresponding to nearest neighbors in the training set, and the
reconstructed maps retain qualitative features of the generated maps. The ↵-carbon rigid body
alignment errors between the coordinate recovery methods are also small relative to nearest neighbors
in the training set (Figure 2c).
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In Figure 2d, we show the relative contribution to the recovered map error from the coordinate
recovery process versus the generative model. While the reconstruction process introduces errors,
the error is only slightly higher for the reconstruction of generated maps versus real maps for the 64-
and 128- residue models. This indicates that the most of the reconstruction error is inherent to the
reconstruction, versus correcting errors in the generated maps. In contrast, for a weaker 256-residue
GAN, which fails to produce realistic maps or corresponding structure, the map reconstruction error
for generated maps far exceeds that of real maps.

Folded structures are shown in Figure 3. We found that the generator was able to learn to construct
meaningful secondary structure elements such as alpha helices and beta sheets. The Rosetta folding
procedure is slow but produces locally correct structures (Figure 3c). In contrast, the ADMM folding
procedure is fast but cannot correct for errors in local structure (Figure 3c). Linear interpolations in
the latent space of the GAN map to smooth interpolations in the generated pairwise distances, as well
as in the corresponding structures (Figures S4, S5). In addition, we found that the generator could
produce maps closely corresponding to real protein structure maps through optimization of the input
latent vector, indicating that the models are sufficiently complex (Section A.4, Figure S6).

Assuming average bond angles and bond lengths for the peptide backbone, the 3D structure of the
backbone can be exactly represented in terms of the torsion, or dihedral, angles �, , and !, defined
as the angles around the N � C↵, C↵ � C, and C � N

0 bonds, respectively. ! is typically 180
degrees (trans orientation), except in the rare case when ! is around 0 degrees (cis orientation). The
�, distribution ( Ramachandran plot) indicates allowable backbone torsion angles and different
regions of the distribution correspond to alpha helix, beta sheet, and loop regions. We show the �, 
distribution of the generated structures and baselines in Figure S7.

The baselines (Figure 3d-g) underperform relative to the ↵-carbon distance map method. Out of
all the methods, the torsion GAN best adheres to the true �, distribution (Figure S7h); however,
the torsion GAN, TorusDBN, and FB5-HMM baselines generate many structures which loop in on
themselves and do not have realistic global 3D protein structure (Figure 3e-g).

The full-atom GAN (Figure 3d) also underperforms relative to the ↵-carbon distance map method.
The generated structures are represented with breaks in the peptide chain, because often the placement
of backbone atoms is far enough from real backbone geometry such that the structure cannot be
rendered as a contiguous chain. It is possible that a full-atom method would work better with a
generative model that is multi-scale, learning both local peptide structure and global 3D structure.
Results for the 3DGAN baseline are given in Figure S8; we found that this method could not generate
meaningful structures.

4.2 Inpainting for protein design

Next, we considered how to use the trained generative models to infer contextually correct missing
portions of protein structures. This is a protein design problem which arises in the context of loop
modeling, circular permutation, and interface prediction. We can formulate this problem naturally as
an inpainting problem, where for a subset of residues all pairwise distances are eliminated and the
task is to fill in these distances reasonably, given the context of the rest of the uncorrupted structure.

We used a slightly modified version of the semantic inpainting method described in [36], omitting the
Poisson blending step. This method is described in detail in the supplement Section A.5. We only
present inpainting results on structures in the test set, which the GAN has not seen during training.

4.2.1 Baselines and metrics

We baseline with the following methods:

10-residue supervised autoencoder. We train an autoencoder to reconstruct completed 64-residue
pairwise distance maps given input maps with random 10-residue corruptions. The encoder and
decoder networks are equivalent to the discriminator and generator networks for the GAN, omitting
the last layer of the discriminator and the first layer of the generator. As before, the inputs are
normalized and the outputs are forced to be positive and symmetric. The autoencoder is trained with
supervised `2 loss with respect to the uncorrupted map.

Random corruption supervised autoencoder. We also train the same autoencoder model to recon-
struct completed 64-residue maps given input maps with random corruptions ranging from 5 to 25
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Figure 4: GAN vs. baselines for inpainting 10, 15, and 20 residue segments on 64-residue structures.
Native structures are colored green and reconstructed structures are colored yellow. The omitted
regions of each native structure are colored blue, and the inpainted solutions are colored red. a)
GAN – solution found by sampling 1000 structures and selecting structure with low Rosetta score
and low ↵-carbon rigid body alignment error with respect to the native structure (e). b) Supervised
autoencoder trained on 10 residue corruptions. c) Autoencoder trained on random corruptions
from 5 to 25 residues in length. d) RosettaRemodel – best Rosetta score structure after 4000
sampling trajectories. e) Log scaled Rosetta backbone score (log(Rosetta score + 500)) vs. mean
↵-carbon rigid body alignment error of the inpainted region for GAN solutions (n = 1000). Solutions
are colored by map recovery error of Rosetta with respect to generated map. Arrows indicate rendered
solution (a).

residues in length. This is to more fairly compare against the GAN inpainting method, which can
handle arbitrary length corruptions.

RosettaRemodel. We also baseline the GAN inpainting method with RosettaRemodel [37], which
uses fragment sampling to do loop closure, followed by a sequence design process, guided by a
heuristic energy score. For our experiments, we do 4000 sampling trajectories per structure and rank
the output solutions by their Rosetta score.

There is no canonical evaluation metric for loop closure. We can try to more quantitatively describe
the correctness of the inpainting procedure using as metrics the discriminator score and the least-
squares rigid-body alignment error with respect to the true native structure. However, the GAN
solutions are found by explicitly trying to optimize the discriminator score; hence the corresponding
score will be artificially inflated relative to the baselines. In addition, in the case where the inpainted
solution is plausible but deviates from the native structure, the rigid-body alignment error will be high.
Therefore, we cannot necessarily view these metrics as strong indicators of whether the reconstructed
solutions are reasonable, only as rough heuristics. The ultimate test of the inpainted solutions is to
experimentally verify the structures.

4.2.2 Inpainting results

Results for inpainting of missing residues 128-residue maps are shown in Figure S9. We see that the
trained generator can fill in semantically correct pairwise distances for the removed portions of the
maps. To test whether these inpainted portions correspond to legitimate reconstructions of missing
parts of the protein, we fold the new inpainted maps into structures.

We render some GAN and baseline inpainting solutions for 64-residue structures folded by fragment
sampling in Figure 4. We sample 1000 inpainting solutions using the generator, and render solutions
with low Rosetta backbone score and low rigid body alignment error with respect to the native
structure. For the Rosetta score, we only include backbone energy terms, excluding those terms
involving side-chain interactions. By sampling many solutions for a single inpainting task, we can
see whether native-like solutions are discoverable. In order to show that these solutions are truly
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generated by the GAN and not simply found due to the fragment sampling used in map reconstruction,
we color the points by the `2 map error between the generated map and the reconstructed map after
coordinate recovery.

In general, the 10-residue supervised autoencoder produces unrealistic solutions when made to inpaint
longer regions; however, the autoencoder trained on random corruptions tends to do better. The
primary advantages of the GAN over the autoencoder are that the GAN can handle arbitrary length
loop closures without issue and that the GAN can be used to sample multiple solutions for each
inpainting task, as shown in Figures S10b, S11, and S12.

While the generator and autoencoders can find inpainting solutions in minutes, including the coor-
dinate recovery step, RosettaRemodel takes much longer. For example, for 64-residue structures,
running 100 Rosetta sampling trajectories on a node with 16 CPU cores takes on average 20 minutes.
For our experiments, we ran 100 trajectories per node across 40 nodes, which corresponds to about
13 hours of total CPU time per structure. It is also important to note that since Rosetta samples native
fragments, it is possible for it to find the correct native solution in the course of sampling.

Figure 5: Discriminator score and
mean coordinate `2 alignment error
for 64-residue inpainting task. Each
point is averaged over n = 64 data-
points, except for ‘GAN all’ (n =

640) and ‘Rosetta all’ (n = 2560).

Discriminator score and mean rigid-body alignment error for
the inpainting solutions are given in Figure 5. The mean align-
ment error is calculated for ↵-carbons over the inpainted region
only. For the GAN, results are given for 10 solutions per struc-
ture (‘GAN all’), as well as for the top solutions per structure
under the discriminator score (‘GAN’). For Rosetta, results are
given for the top 40 structures out of 4000 sampling trajectories
(‘Rosetta all’) under the Rosetta score, as well as for the best
solution among all trajectories (‘Rosetta’).

As the size of the inpainting region increases, the autoencoder
discriminator score reduces and the structural solutions are also
qualitatively worse for the autoencoder trained on 10-residue
corruptions; this indicates that supervised autoencoders are not
flexible enough to handle loop closure problems of arbitrary
length. The GAN discriminator score is explicitly optimized
during inpainting and is therefore high. In general, in terms of
alignment error, the GAN inpainting solutions deviate the most
from the native structures relative to the baselines.

The GAN can also be used to model longer or shorter fragments
relative to the native structure; we show two examples in Figure
S10c. In Figure S11 and S12, we show more GAN inpainting
solutions. We are able to recover native-like solutions in terms
of rigid-body error and secondary structure assignment for many inpainting tasks. There are also
low-energy, non-native solutions found in a few cases. We also render some non-native and clearly
implausible inpainting solutions in Figure S13.

5 Conclusion

We use GANs to generate protein ↵-carbon pairwise distance maps and use ADMM to “fold” the
protein structure. We apply this method to the task of inferring completions for missing residues in
protein structures.

Several immediate extensions are possible from this work. We can assess whether the learned
GAN features can improve performance for semi-supervised prediction tasks. We can also see how
conditioning on sequence data, functional data, or higher-resolution structural data might improve
structure generation [38].

Furthermore, we can extend our generative modeling procedure to solve the structure recovery
problem end-to-end and mitigate the issue our current model has with making errors in fine local
structure. The current approach factors through the map representation, which overconstrains the
recovery problem. By incorporating the ADMM recovery procedure as a differentiable optimization
layer of the generator, we can potentially extend the models presented to directly generate and
evaluate 3D structures.
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