NIPS Proceedingsβ

Learning Signed Determinantal Point Processes through the Principal Minor Assignment Problem

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Symmetric determinantal point processes (DPP) are a class of probabilistic models that encode the random selection of items that have a repulsive behavior. They have attracted a lot of attention in machine learning, where returning diverse sets of items is sought for. Sampling and learning these symmetric DPP's is pretty well understood. In this work, we consider a new class of DPP's, which we call signed DPP's, where we break the symmetry and allow attractive behaviors. We set the ground for learning signed DPP's through a method of moments, by solving the so called principal assignment problem for a class of matrices $K$ that satisfy $K_{i,j}=\pm K_{j,i}$, $i\neq j$, in polynomial time.