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Abstract

To better understand the representations in visual cortex, we need to generate better
predictions of neural activity in awake animals presented with their ecological
input: natural video. Despite recent advances in models for static images, models
for predicting responses to natural video are scarce and standard linear-nonlinear
models perform poorly. We developed a new deep recurrent network architecture
that predicts inferred spiking activity of thousands of mouse V1 neurons simulta-
neously recorded with two-photon microscopy, while accounting for confounding
factors such as the animal’s gaze position and brain state changes related to running
state and pupil dilation. Powerful system identification models provide an opportu-
nity to gain insight into cortical functions through in silico experiments that can
subsequently be tested in the brain. However, in many cases this approach requires
that the model is able to generalize to stimulus statistics that it was not trained on,
such as band-limited noise and other parameterized stimuli. We investigated these
domain transfer properties in our model and find that our model trained on natural
images is able to correctly predict the orientation tuning of neurons in responses to
artificial noise stimuli. Finally, we show that we can fully generalize from movies
to noise and maintain high predictive performance on both stimulus domains by
fine-tuning only the final layer’s weights on a network otherwise trained on natural
movies. The converse, however, is not true.

1 Introduction

The visual cortex represents natural stimuli in a complex and highly nonlinear way [1, 2]. In order to
understand these representations, we need predictive models that can account for neural responses to
natural movies. This task is particularly challenging because a substantial portion of the response
variability in cortical neurons is not driven by the stimulus, but by other factors such as eye movements
under free-viewing conditions and brain state changes [3–9]. While deep convolutional networks have
recently been shown to improve prediction performance over linear-nonlinear type models [10–13]
and are currently considered state-of-the-art, in V1 they have only been used to predict responses to
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Figure 1: One timestep of the recurrent archi-
tecture: The network consists of a core, a read-
out, a shifter, and a modulator. The core uses
a CNN to generate a non-linear feature repre-
sentation of one frame of the movie, which is
then fed into a GRU. The readout decomposes
the hidden state of the GRU into different scales
and reads from one spatial location per neuron
across all features and scales using a spatial
transformer grid point. The shifter predicts a
shift for the entire neuron population based on
the pupil position. The modulator predicts a
gain term per time point and neuron based on
the running state and pupil dilation of the ani-
mal.

static natural images. These models also make sub-optimal use of the data, because they currently
do not account for stimulus-independent variability. Furthermore, system identification is only one
step towards a better understanding of cortical representations. Successful models must be able to
generalize beyond the stimulus statistics they are trained on to generate new insights that can be tested
back in the brain. This domain transfer is a known hard problem in neural system identification and
machine learning in general, since it requires generalization beyond the statistics of the training set.

We make three contributions towards this goal: (i) we propose a novel recurrent neural network
architecture that can simultaneously predict the responses of thousands of cortical neurons while
accounting for neural variability caused by eye movements or brain state changes related to measurable
factors such as running state or pupil dilations; (ii) we demonstrate that training our model on natural
movies allows some extent of domain transfer and recovers neurons’ tuning properties, such as
orientation tuning, direction tuning, and receptive field structure, under artificial stimuli; and (iii)
we analyze the limits of domain transfer to show that models trained directly on the target domain
always outperform those trained on other domains in terms of predictive performance. However,
we also demonstrate that the nonlinear feature representation learned on natural movies can transfer
well to the noise domain by fine-tuning the last layer’s weights, while the converse is not true (i. e.
generalization from noise to movies). In fact, there exists a single set of feature weights that leads to
optimal performance in both domains, even though we currently cannot identify this set of weights
from natural movies alone.

2 Network Architecture

Our network consists of four components (Figure 1): a core providing nonlinear recurrent features
from the video frames, a readout mapping the core features to each neuron’s activity, a shifter
predicting receptive field shifts from pupil position, and a modulator providing a gain factor for each
neuron depending on the running state and the pupil dilation of the animal (Figure 1).

Core The core consists of a three-layer, 2d convolutional neural network (CNN), applied separately
to each frame, followed by a convolutional Gated Recurrent Unit (GRU) [14]. Each CNN layer
is composed of a 2d convolution layer, a batch normalization layer [15], and an ELU nonlinearity
[16]. The first layer has a skip connection into the third layer which is stacked onto the input. That
is, if the first and second layer have k1 and k2 output channels, the third layer has k1 + k2 input
channels. Finally, similar to DenseNets [17], the outputs of all layers are stacked and fed to a
one-layer convolutional GRU that models the lag between input and neural response and recurrently
computes nonlinear features. Previous work demonstrated that neural response properties like
direction selectivity can be modeled by recurrent networks [18].

2



Readout We model the neural response as an instantaneous affine function of the hidden state of
the GRU at time t followed by an ELU nonlinearity and an offset of 1 to make the response positive.
At each point in time the hidden state of the GRU is a tensor v ∈ Rw×h×c. The straightforward
approach of using a fully connected layer

∑
ijk wijkvijk [10] or a factorized layer

∑
ijk wijwkvijk

over features and space [12] requires strong regularization to deal with the large number of parameters
and can potentially lead to ghosting artifacts where the receptive field of a neuron shows up at several
locations if the spatial components wij are non-zero at more than one spatial location because of
fitting noise or ambiguities in the data caused by gaze shifts. To circumvent these issues we explicitly
incorporate the prior knowledge that a neuron only reads out from one particular location in space
and model each neuron with a spatial transformer layer [19] with a single grid point reading from
vijk. Thus, each neuron i is parameterized by a relative spatial location (xi, yi) ∈ [−1, 1]2 at which
the spatial transformer layer extracts a local feature vector vxiyi: by bilinearly interpolating the
adjacent pixels; a linear-nonlinear function later combines these features into a single neural response
yi = f(w>i vxiyi: + bi). Since, a priori, we do not know the spatial location of the neuron, the
(xi, yi) become part of the network parameters and are learned via gradient descent. However, this
introduces another problem: when the initial estimate of the location is far away from the neuron’s
actual location, there is little gradient information to nudge the grid point to the correct place. We
therefore decompose vijk into ` spatial scales through repeated application of a p× p average pooling
layer with stride p until the smaller spatial dimension is only one pixel in size: v(j) = pool(j)(v).
The spatial transformer layer then extracts ` feature vectors from the same relative location (xi, yi)
at each scale and stacks them into a single feature vector of dimension k × ` fed to the final affine
function and nonlinearity yi = f(

∑`
j=1 w

>
jiv

(j)
xiyi: + bi) (Figure 1). Importantly, the relative spatial

location is shared across scales.

Shifter Unlike primates, mice are not trained to fixate their gaze in a single position, complicating
eye tracking. To model the responses of thousands of neurons in a free viewing experiment, we take
an alternative approach and directly estimate a receptive field shift for all neurons from the tracked
pupil position solely based on optimizing the predictive performance of the network. Specifically,
we feed the pupil location p ∈ R2 into a network that predicts a shift ∆x = (∆x,∆y) ∈ R2 for
each time point which is added onto all locations xi = (xi, yi) of the spatial transformer readout.
Note that the pupil location is measured in coordinates of the camera recording the eye, while the
shift needs to be applied in monitor coordinates. This transformation can either be estimated by a
calibration procedure [20–22], or learned from the data using regression on pairs of eye camera–
monitor coordinates. Our approach differs from previous ones in that it estimates gaze shifts purely
based on prediction performance. To a first approximation, the mapping from pupil coordinates to
gaze shifts is affine. We therefore use a one layer perceptron (MLP) with a tanh nonlinearity for
predicting ∆x for all neurons. We empirically found that clipping xi + ∆x back to [−1, 1]2 improves
the performance of the network.

Modulator To account for fluctuations in neural responses unrelated to the visual stimulus, we
use variables known to correlate with brain state—pupil dilations (and their derivative) and absolute
running speed of the animal [4, 5, 23]—to predict, per timepoint, a neuron-specific multiplicative
gain factor applied to the output of the readout layer. We use a GRU followed by a fully connected
layer and an exponential nonlinearity offset by one to predict this factor and model the unknown
delay between behavioral state and neural gain.

3 Related Work

There is a number of previous studies that predict neural responses to natural images or video,
differing in the degree to which parts of the network are hand-crafted, the complexity of the network,
the neural responses they are fitted to (electrophysiology vs. two-photon), the species the data was
recorded in (mouse, cat, monkey), whether the animal was anaesthetized, and whether multiple
neurons share parts of the network. None of the previous approaches predict a comparably large
number of neurons, very few use video, and none simultaneously account for eye shifts and brain
state modulations.

Gallant and colleagues were the first to fit models to movies of natural scenes predicting the responses
in macaque area V1 and MT [1, 24–26]; their models are either spatio-temporal linear-nonlinear
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models or use hand-crafted non-linear features such as power in the Fourier domain or divisive
normalization. Since the monkey is fixating during their recordings, there is less need to consider
eye movement and brain state. Lau et al. trained a multi-layer perceptron with inputs from different
delayed time points to predict responses of V1 neurons to random bars [27]. Vintch et al. trained
a two state linear-nonlinear model with a convolutional first layer to predict cell responses in
monkey V1 [28]. Similar to our work, Batty et al. used a multi-layer recurrent network as a feature
representation for a linear-nonlinear model to predict retinal ganglion cells [29]. Sussillo et al. used a
variational autoencoder to infer latent low dimensional dynamics to explain neural responses [30];
their model was only tested on synthetically generated data. Other studies predict neural responses to
static artificial or natural images [10–12, 26, 27, 31, 32]. Zipser and Andersen were one of the first
to use neural networks to predict neural data; they used visual input and eye position to model the
responses of neurons in area 7a whose neurons are involved in visuo-motor coordination [33].

4 Experiments

Neural and Behavioral Data Our data consists of three sets of 1344-4692 simultaneously recorded
deconvolved fluorescence traces [34] from two-photon scans in mouse visual cortex area V1 L2/3,
collected from three animals using a large-field-of-view mesoscope [35]. Cells were selected based
on spatial features of the segmented masks, but disregarding visual responsiveness. The acquisition
frame rate was roughly 6Hz. Pupil position, dilation, and absolute running speed of the animal were
monitored with an eye tracking camera and a styrofoam treadmill. The contour of the pupil was
extracted semi-automatically for each frame. The center and the major radius of a fitted ellipse were
used as the position and the dilation of the pupil. All behavioral traces were lowpass filtered to
2.5Hz using a hamming filter. To match the frame rate of the stimuli, all neural and behavioral traces
were subsequently upsampled to 30Hz using linear interpolation. Data can be downloaded from
https://web.gin.g-node.org/cajal/Sinz2018_NIPS_data.

Stimuli The mice were presented with natural video (10s clips from both, Hollywood movies
and rendered 3D scenes), and parametric noise clips on a standard LCD monitor. Noise movies
consisted of ten minutes of bandpass filtered Gaussian noise with interleaved periods of drifting
orientation bias and ten minutes of the cosine of a low spatial frequency Gaussian process. Real
natural scenes included 42 min of 10s clips extracted from Hollywood action movies and the YouTube
1M dataset [36]. Rendered natural scenes consisted of 21 min of 10s clips produced using unreal
engine with custom scenes and programmed camera flights. All movies were converted to grayscale
and presented at 30Hz. Prior to feeding the data to the network, all frames were downsampled to
36× 64px. Videos that did not match the 16:9 ratio were center cropped.

Network Implementation All numerical experiments and analyses were performed using Data-
Joint [37], Numpy/Scipy [38], Matplotlib [39], Seaborn [40], Jupyter [41], PyTorch [7], and Docker
[42]. All models were trained on NVIDIA TitanX, 1080ti, or TitanV. Code is available from
https://github.com/sinzlab/Sinz2018_NIPS. The core used 3× 3 zero-padded convolutions
(except for the first layer that used 7× 7) with 12 features in each layer. First layer filters were regu-
larized with an L2 norm on the Laplace filtered weights to encourage low frequency filters. The filters
of the hidden layers were regularized using a group sparsity regularizer on all filters corresponding
to one output channel. Batch normalization used a momentum term of 0.1. Convolutional layers in
the GRU used 3× 3 zero-padded convolutions with 36 feature channels, and no regularization. The
initial state of the GRU was learned as an additional parameter. Nonlinearities in the core were ELUs.
The readout used five 4× 4 average pooling steps with stride 4, and an ELU+1 nonlinearity to keep
the neural responses positive. We also tried 4× 4 with a stride of 2 but did not find a strong effect
on the performance. The readout weight vectors were L1 regularized. The bias of the readout was
initialized to match the mean response of the respective neuron. While developing the network we
found that this speeds up optimization, but does not affect the final performance. The shifter used L2
regularization on the weight matrix. The GRU of the modulator used 50 hidden channels.

Training Schedule and Hyper-Parameter Selection Due to the large number of hyper-parameters,
the specific network and training settings were determined using a combination of grid search and
manual exploration on a validation set. We selected for kernel size, channels, and regularization
constants. We found that strong input filter regularization helps, and sparse regularization in the
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(a) full model vs. linear-nonlinear (b) oracle vs. model performance (c) influence of shifter and modulator

Figure 2: Performance of the model. (a) Single trial correlation of the model prediction with
the neuronal responses across neurons for the full recurrent model and a spatio-temporal linear-
nonlinear model equipped with a shifter and modulator. Error bars mark 95% confidence interval. (b)
Model test correlation against oracle correlation, which represents an upper bound of the achievable
performance bases solely on the stimulus. The percentage of oracle was computed from the slope of
a linear regression without offset. (c) Influence of the single network components on the prediction
performance.

readout is important. When the number of channels is too large, we run into overfitting problems.
Within a reasonable range of kernel sizes the network is quite insensitive to the kernel size. Afterwards,
we used the same settings for all recordings, unless we explicitly explored the effect of different
network architectures on performance. Networks were either trained on noise movies or natural
movies. Each training batch contained 8 clips of 5s each, randomly selected from longer clips
in the training set. Validation and test scores were computed on the full length clips. The pupil
position was standardized to mean zero and standard deviation one across the entire training set.
The behavioral traces were divided by their standard deviation. We used time-averaged Poisson loss
〈ŷ − y log(ŷ + ε)〉t>t0

to train the models, with ε = 10−16 for numerical stability and an initial
burn-in period of t0 = 15 frames to allow the recurrent networks to settle in from the initial state. We
optimized the objective using ADAM [43] and a two stage training schedule with step size 0.005 and
0.001, respectively. Each training stage finished if either the correlation between single trials of the
validation set and the model responses (using the same burn in period of 15 frames) did not improve
over the current best result for 5 occasions checked every 4 sweeps through the training set or if the
number of sweeps through the dataset exceeded 500. At the end of each training stage, the model
was reset to the best performing model within that stage.

5 Results

5.1 Performance

We trained networks on noise or natural movies from scans on three different animals (17358-5-3,
17797-8-5, 18142-6-3). We measured the performance by the correlation between the model
prediction and the neural responses across six 10s test clips each repeated 10 times. The networks
reach an average correlation across neurons of 0.145 to 0.18, depending on the particular scan and
movie type. Note that these are single-trial predictions at 30 Hz, thus the relatively low prediction
accuracy; we will discuss this below. We compared our recurrent network to a linear-nonlinear model
consisting of a 3D convolutional layer with filter size 13 (in space and time) and 36 channels, a
batch norm layer, and the same readout, shifter, and modulator architecture as the recurrent model
to allow it to account for variability unrelated to visual stimulus. This model had a comparable
number of parameters as our network. Ignoring components common to both and biases the number
of parameters were: linear-nonlinear model 133 ·36 = 79092 (3D-conv); ours 91740 total parameters
(72 ·12+(122 +24 ·12) ·32 in CNN, 6 ·33 ·362 in GRU)). However, even though the linear-nonlinear
network had on the same order of parameter and used the same shifter or modulator components, our
recurrent network consistently performed better (Figure 2a).
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Cortical neurons naturally exhibit a substantial degree of variability in their responses which affects
their predictability. To get an idea of the model performance relative to the best achievable perfor-
mance, we correlated each trial in the test set with the “oracle” estimator, computed by correlating
the mean over the n− 1 other repeats with the remaining trial, and averaging that over all splits and
repeated images. We estimated the percentage-of-oracle as 100× the slope of a linear regression
without offset fitted to the oracle and model test correlations. All networks achieve 50% to 70%
of the achievable oracle score (Figure 2b). These scores are for natural movies only, since noise
movies were not repeated. Note that the network performance could in principle be better than the
oracle performance, since the oracle is only computed on repeats of the stimulus and not on trial
specific-behavioral variables to which the network has access. In order to measure the contribution
of the shifter and modulator components on the prediction performance, we trained networks with
those components turned off. Without shifter or modulator, the percent oracle scores were 35.7%
(17358-5-3, 50.4% with), 56.3% (17797-8-5, 68.3% with), 44.5% (18142-6-3, 57.7% with). This
showed that both components improve the network performance (Figure 2c). The relative contribution
of each component depends on the particular dataset.

6 Domain transfer

In the following two sections, we explore to what extent a model trained on natural videos can predict
neural responses and tuning properties determined by noise stimuli.

6.1 Tuning

We first mapped receptive fields of the networks trained on either natural movies or noise with a newly
generated set of colored noise and compared them to receptive fields of neurons mapped with reverse
correlation. Figure 3a shows a selection of receptive fields for neurons with the best prediction scores
on natural movies, along with the receptive field of the real neuron and the model trained on noise
movies. Qualitatively, the orientation, location, and general sub-field structure matches between the
networks and neurons.

Next, we computed direction tuning curves for the real neurons and their respective model neurons in
models trained on noise and natural movies (Figure 3b). On average, both models correctly infer the
preferred orientation, but sometimes exhibit a sign flip in the direction. The model trained on noise
typically exhibits a closer match with the tuning of the real neuron. We quantified this by computing
the distribution of the difference ∆φ in preferred orientation between model neurons and their real
counterparts. We considered all neurons whose direction tuning functions had an R2 > 0.005 and
an orientation selectivity index OSI> 0.2 (R2 > 0.002 and DSI> 0.1 for direction selectivity;
{D,O}SI= (rp − ra)/(rp + ra) for rp, ra are the mean responses in the preferred and anti-preferred
orientation/direction), and models trained on noise and natural movies, as well as with and without
shifter and modulator networks (Figure 3c). In all instances, the distributions are centered around zero
which means that all the models predict the correct orientation on average. However, for orientation
selectivity models on natural movies without shifter and modulator components exhibit a larger
variance (p < 0.03, p < 0.0015, p < 10−11 for the three scans using Levene’ test) and slight biases
in the median of the distribution. This indicates that accounting for confounding variables can be
relevant in domain transfer for neural prediction. The models trained on noise exhibit a substantially
lower variance in ∆φ. A similar pattern is seen when quantifying the difference in preferred direction
(Figure 3d).

6.2 Limits of domain transfer

While the network trained on natural images generally predicts the correct tuning properties of the
neurons, there is a clear drop in the quality of tuning property prediction across stimulus domains.

One possible reason for this could be that a network core trained on natural movies does not provide
the right features to predict responses to noise. To test this hypothesis, we trained a network with
three readouts all referring to the same neurons and a core exclusively trained on one stimulus domain
(Figure 4a). To ensure that the core was only trained on one stimulus domain, we stopped the gradient
of both other readouts before the core. One readout was trained with natural movies only, one with
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(a) Receptive fields

(b) Direction tuning curves

(c) Difference in preferred orientation. (d) Difference in preferred direction.

Figure 3: (a) Receptive fields computed by reverse correlation of colored Gaussian noise with
responses of a network trained on neural responses to noise (top row in each group), the actual neural
responses (middle row), and a network trained on responses to natural video. For presentation, we
averaged the spatio-temporal receptive field over the first 300ms. (b) Direction tuning curves of
real neurons (dashed) and their model counterparts trained on natural movies (pink) and (noise)
blue. We show curves for neurons that were best predicted on natural images, among all neurons
that exhibited direction tuning with R2 > 0.005 and an orientation selectivity index (OSI) > 0.2.
Curves are z-scored to match the scale. (c-d) Difference in preferred orientation (left) and direction
(right) between neurons and model neurons trained on either natural or noise movies for model with
shifter and modulators, and without. We only considered neurons with R2 > 0.005 and OSI> 0.2
(R2 > 0.002 and DSI> 0.1 for direction selectivity). Lines denote the median.
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Figure 4: (a) Network configuration for domain transfer training. Vertical squares represent readouts.
Interrupted lines denotes gradient stopping during training. All readouts are trained on the same set
of neurons but on different stimulus domains. (b) The core trained on natural movies performs well
on noise if the readout is trained on noise (left panel), but not vice versa (right panel). (c) Using the
natural movie core, performance drops when the readout is not trained on the respective domain.
However, one readout trained on both domains performs as well as each readout trained dedicated on
the test domain. Note that the left and right bar groups in each panel refer to the same network.

noise movies only, and one with both. We also shared the grid locations of the neurons between the
readouts, and balanced the stimulus domains in the batches for the shared readout.

We first compared the performance of each core (trained on natural movies vs. noise) always using
the readout trained on the target domain (i. e. readout trained on the same stimulus domain as the test
set). We found that both the natural movie core and the noise core perform well when testing on noise.
In contrast, we observe a substantial performance drop for the noise core when testing on natural
movies (Figure 4b). This result shows that the feature representations of the natural movie core are
rich enough to transfer to noise stimuli, while the converse is not true. One possible confounding
factor for this finding is the different stimulus presentation times between noise (20min) and natural
movies (∼1h). We ran a control experiment to show that this is not the case (see supplementary
material). We also ran a control experiment to show that there is no drop in performance between
networks trained on rendered movies vs. natural movies only (see supplementary material).

We next turn to the setting where the readout is not trained without using stimuli from the target
domain. For this experiment we always use the core trained on movies, and investigate three different
readouts: trained on movies, trained on noise, and traind on both. We find that when training and
testing domain are not the same, there is a clear decrease in prediction performance (Figure 4c, green
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and gray bars). This could either mean that the readout weights cannot be correctly learned from the
dataset on one domain, or that the real neurons adapt to the particular stimulus domain and no set
of readout weights can predict well on both domains. We investigated this question with a readout
trained on both stimulus domains. We found that this single readout can perform as well on both
domains as each dedicated readout trained on the target domain (compare blue bars to either green or
gray). Thus, there is a network that can correctly transfer between both stimulus domains, but that
this network cannot be identified by simply training on the natural movie dataset alone.

To corroborate this finding and to determine that difference in performance is caused by the readout
weights and not the bias terms we perform a recovery experiment where we linearly interpolate
between the weights of the readout trained on both domains and the respective single domain readout
weights (controlled by λnoise and λmovies in Figure 5). For each interpolation, we compute the
Poisson loss and the correlation between prediction and neuronal response on the training set. The
resulting loss surfaces are consistent with the identifiability hypothesis and show that the network
has no gradient information to find the set of readout weights that transfers correctly between both
domains (origin in each panel of Figure 5).

7 Summary

We presented a novel recurrent network architecture that can fit the responses of thousands of neurons
to movies. In addition, our network also accounts for stimulus independent response variation caused
by brain state changes and eye movements during the experiment. We demonstrated that both these
factors can increase the prediction performance of the network and the ability to transfer neural
properties between stimulus domains. To the best of our knowledge, this network is state-of-the-art
in predicting neural responses to natural video.

We demonstrated that this network trained on natural movies captures neuronal tuning properties
determined on noise. Finally, we showed that there is a network that transfers very well between
both stimulus domains, but that this network cannot be identified from training on the natural movie
domain alone. One possible avenue to overcome this problem in the future would be to introduce the
correct model biases in our architecture via a carefully chosen regularization scheme.
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