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Abstract

Novelty detection is the problem of identifying whether a new data point is con-
sidered to be an inlier or an outlier. We assume that training data is available to
describe only the inlier distribution. Recent approaches primarily leverage deep
encoder-decoder network architectures to compute a reconstruction error that is
used to either compute a novelty score or to train a one-class classifier. While
we too leverage a novel network of that kind, we take a probabilistic approach
and effectively compute how likely it is that a sample was generated by the inlier
distribution. We achieve this with two main contributions. First, we make the
computation of the novelty probability feasible because we linearize the parame-
terized manifold capturing the underlying structure of the inlier distribution, and
show how the probability factorizes and can be computed with respect to local
coordinates of the manifold tangent space. Second, we improve the training of the
autoencoder network. An extensive set of results show that the approach achieves
state-of-the-art performance on several benchmark datasets.

1 Introduction

Novelty detection is the problem of identifying whether a new data point is considered to be an inlier
or an outlier. From a statistical point of view this process usually occurs while prior knowledge
of the distribution of inliers is the only information available. This is also the most difficult and
relevant scenario because outliers are often very rare, or even dangerous to experience (e.g., in
industry process fault detection [1]), and there is a need to rely only on inlier training data. Novelty
detection has received significant attention in application areas such as medical diagnoses [2], drug
discovery [3], and among others, several computer vision applications, such as anomaly detection in
images [4, 5], videos [6], and outlier detection [7, 8]. We refer to [9] for a general review on novelty
detection. The most recent approaches are based on learning deep network architectures [10, 11], and
they tend to either learn a one-class classifier [12, 11], or to somehow leverage as novelty score, the
reconstruction error of the encoder-decoder architecture they are based on [13, 7].

In this work, we introduce a new encoder-decoder architecture as well, which is based on adversarial
autoencoders [14]. However, we do not train a one-class classifier, instead, we learn the probability
distribution of the inliers. Therefore, the novelty test simply becomes the evaluation of the probability
of a test sample, and rare samples (outliers) fall below a given threshold. We show that this approach
allows us to effectively use the decoder network to learn the parameterized manifold shaping the inlier
distribution, in conjunction with the probability distribution of the (parameterizing) latent space. The
approach is made computationally feasible because for a given test sample we linearize the manifold,
and show that with respect to the local manifold coordinates the data model distribution factorizes
into a component dependent on the manifold (decoder network plus latent distribution), and another
one dependent on the noise, which can also be learned offline.
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We named the approach generative probabilistic novelty detection (GPND) because we compute the
probability distribution of the full model, which includes the signal plus noise portion, and because it
relies on being able to also generate data samples. We are mostly concerned with novelty detection
using images, and with controlling the distribution of the latent space to ensure good generative
reproduction of the inlier distribution. This is essential not so much to ensure good image generation,
but for the correct computation of the novelty score. This aspect has been overlooked by the deep
learning literature so far, since the focus has been only on leveraging the reconstruction error. We do
leverage that as well, but we show in our framework that the reconstruction error affects only the
noise portion of the model. In order to control the latent distribution and image generation we learn
an adversarial autoencoder network with two discriminators that address these two issues.

Section 2 reviews the related work. Section 3 introduces the GPND framework, and Section 4
describes the training and architecture of the adversarial autoencoder network. Section 6 shows a
rich set of experiments showing that GPND is very effective and produces state-of-the-art results on
several benchmarks.

2 Related Work

Novelty detection is the task of recognizing abnormality in data. The literature in this area is sizable.
Novelty detection methods can be statistical and probabilistic based [15, 16], distance based [17],
and also based on self-representation [8]. Recently, deep learning approaches [7, 11] have also been
used, greatly improving the performance of novelty detection.

Statistical methods [18, 19, 15, 16] usually focus on modeling the distribution of inliers by learning
the parameters defining the probability, and outliers are identified as those having low probability
under the learned model. Distance based outlier detection methods [20, 17, 21] identify outliers by
their distance to neighboring examples. They assume that inliers are close to each other while the
abnormal samples are far from their nearest neighbors. A known work in this category is LOF [22],
which is based on k-nearest neighbors and density based estimation. More recently, [23] introduced
the Kernel Null Foley-Sammon Transform (KNFST) for multi-class novelty detection, where training
samples of each known category are projected onto a single point in the null space and then distances
between the projection of a test sample and the class representatives are used to obtain a novelty
measure. [24] improves on previous approaches by proposing an incremental procedure called
Incremental Kernel Null Space Based Discriminant Analysis (IKNDA).

Since outliers do not have sparse representations, self-representation approaches have been proposed
for outlier detection in a union of subspaces [4, 25]. Similarly, deep learning based approaches
have used neural networks and leveraged the reconstruction error of encoder-decoder architectures.
[26, 27] used deep learning based autoencoders to learn the model of normal behaviors and employed
a reconstruction loss to detect outliers. [28] used a GAN [29] based method by generating new
samples similar to the training data, and demonstrated its ability to describe the training data. Then it
transformed the implicit data description of normal data to a novelty score. [10] trained GANs using
optical flow images to learn a representation of scenes in videos. [7] minimized the reconstruction
error of an autoencoder to remove outliers from noisy data, and by utilizing the gradient magnitude
of the auto-encoder they make the reconstruction error more discriminative for positive samples.
In [11] they proposed a framework for one-class classification and novelty detection. It consists of
two main modules learned in an adversarial fashion. The first is a decoder-encoder convolutional
neural network trained to reconstruct inliers accurately, while the second is a one-class classifier
made with another network that produces the novelty score.

The proposed approach relates to the statistical methods because it aims at computing the probability
distribution of test samples as novelty score, but it does so by learning the manifold structure of the
distribution with an encoder-decoder network. Moreover, the method is different from those that
learn a one-class classifier, or rely on the reconstruction error to compute the novelty score, because
in our framework we represent only one component of the score computation, allowing to achieve an
improved performance.

State-of-the art works on density estimation for image compression include Pixel Recurrent Neural
Networks [30] and derivatives [31, 32]. These pixel-based methods allow to sequentially predict
pixels in an image along the two spatial dimensions. Because they model the joint distribution of the
raw pixels along with their sequential correlation, it is possible to use them for image compression.
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Figure 1: Manifold schematic representa-
tion. This figure shows connection between the
parametrized manifold M , its tangent space T ,
data point x and its projection xk .
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Figure 2: Reconstruction of inliers and out-
liers. This figure showns reconstructions for the
autoencoder network that was trained on inlier
of label "7" of MNIST [37] dataset. First line
is input of inliers of label "7", the second line
shows corresponding reconstructions. The third
line corresponds to input of outlier of label "0"
and the forth line, corresponding reconstructions.

Although they could also model the probability distribution of known samples, they work at a local
scale in a patch-based fashion, which makes non-local pixels loosely correlated. Our approach instead,
does not allow modeling the probability density of individual pixels but works with the whole image.
It is not suitable for image compression, and while its generative nature allows in principle to produce
novel images, in this work we focus only on novelty detection by evaluating the inlier probability
distribution on test samples.

A recent line of work has focussed on detecting out-of-distribution samples by analyzing the output
entropy of a prediction made by a pre-trained deep neural network [33, 34, 35, 36]. This is done by
either simply thresholding the maximum softmax score [34], or by first applying perturbations to the
input, scaled proportionally to the gradients w.r.t. to the input and then combining the softmax score
with temperature scaling, as it is done in Out-of-distribution Image Detection in Neural Networks
(ODIN) [36]. While these approaches require labels for the in-distribution data to train the classifier
network, our method does not use label information. Therefore, it can be applied for the case when
in-distribution data is represented by one class or label information is not available.

3 Generative Probabilistic Novelty Detection

We assume that training data points x1, . . . , xN , where xi 2 Rm , are sampled, possibly with noise
ξi , from the model

xi = f (zi ) + ξi i = 1 , � � � , N , (1)

where zi 2 
 � Rn . The mapping f : 
 ! Rm defines M � f (
) , which is a parameterized
manifold of dimension n, with n < m. We also assume that the Jacobi matrix of f is full rank at
every point of the manifold. In addition, we assume that there is another mapping g : Rm ! Rn ,
such that for every x 2 M , it follows that f (g(x)) = x, which means that g acts as the inverse of f
on such points.

Given a new data point �x 2 Rm , we design a novelty test to assert whether �x was sampled from
model (1). We begin by observing that �x can be non-linearly projected onto �xk 2 M via �xk = f (�z),
where �z = g(�x). Assuming f to be smooth enough, we perform a linearization based on its first-order
Taylor expansion

f (z) = f (�z) + Jf (�z)(z � �z) + O(kz � �zk2) , (2)

where Jf (�z) is the Jacobi matrix computed at �z, and k � k is the L2 norm. We note that T =
span(Jf (�z)) represents the tangent space of f at �xk that is spanned by the n independent column
vectors of Jf (�z), see Figure 1. Also, we have T = span(U k ), where Jf (�z) = U kSV > is the
singular value decomposition (SVD) of the Jacobi matrix. The matrix U k has rank n, and if we define
U? such that U = [U kU? ] is a unitary matrix, we can represent the data point �x with respect to the
local coordinates that define the tangent space T , and its orthogonal complement T ? . This is done
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