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Abstract

Teaching is critical to human society: it is with teaching that prospective students
are educated and human civilization can be inherited and advanced. A good
teacher not only provides his/her students with qualified teaching materials (e.g.,
textbooks), but also sets up appropriate learning objectives (e.g., course projects
and exams) considering different situations of a student. When it comes to artificial
intelligence, treating machine learning models as students, the loss functions that
are optimized act as perfect counterparts of the learning objective set by the teacher.
In this work, we explore the possibility of imitating human teaching behaviors
by dynamically and automatically outputting appropriate loss functions to train
machine learning models. Different from typical learning settings in which the loss
function of a machine learning model is predefined and fixed, in our framework, the
loss function of a machine learning model (we call it student) is defined by another
machine learning model (we call it teacher). The ultimate goal of teacher model
is cultivating the student to have better performance measured on development
dataset. Towards that end, similar to human teaching, the teacher, a parametric
model, dynamically outputs different loss functions that will be used and optimized
by its student model at different training stages. We develop an efficient learning
method for the teacher model that makes gradient based optimization possible,
exempt of the ineffective solutions such as policy optimization. We name our
method as “learning to teach with dynamic loss functions” (L2T-DLF for short).
Extensive experiments on real world tasks including image classification and neural
machine translation demonstrate that our method significantly improves the quality
of various student models.

1 Introduction

Teaching, which aims to help students learn new knowledge or skills effectively and efficiently, is
important to advance modern human civilization. In human society, the rapid growth of qualified
students not only relies on their intrinsic learning capability, but also, even more importantly, relies on
the substantial guidance from their teachers. The duties of teachers cover a wide spectrum: defining
the scope of learning (e.g., the knowledge and skills that we expect students to demonstrate by the end
of a course), choosing appropriate instructional materials (e.g., textbooks), and assessing the progress
of students (e.g., through course projects or exams). Effective teaching involves progressively and
dynamically refining the teaching strategy based on reflection and feedback from students.

Recently, the concept of teaching has been introduced into artificial intelligence (AI), so as to improve
the learning process of a machine learning model. Currently, teaching in AI mainly focuses on
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training data selection. For example, machine teaching [56, 34, 35] aims at identifying the smallest
training data that is capable of producing the optimal learner models. The very recent work, learning
to teach (L2T for short) [13], demonstrates how to automatically design teacher models for better
machine learning process. While conceptually L2T can cover different aspects of teaching in AI, [13]
only studies the problem of training data teaching.

In this work, inspired from learning to teach, we study loss function teaching in a formal and concrete
manner for the first time. The main motivation of our work is a natural observation on the analogy
between loss functions in machine learning and exams in educating human students: appropriate
exams reflect the progress of students and urge them to make improvements accordingly, while loss
values outputted by the loss function evaluate the performance of current machine learning model
and set the optimization direction for the model parameters.

In our loss function teaching framework, a teacher model plays the role of outputting loss functions
for the student model (i.e., the daily machine learning model to solve a task) to minimize. Inspired
from human teaching, we design the teacher model according to the following principles. First,
similar to the different difficulty levels of exams with respect to the progress of student in human
education, the loss function set by the teacher model should be dynamic, i.e., the loss functions
should be adaptive to different phases of the training process of the student model. To achieve
this, we require our teacher model to take the status of student model into consideration in setting
the loss functions, and to dynamically change the loss functions with respect to the growth of the
student model. Such process is shown in Fig. 1. Second, the teacher model should be able to make
self-improvement, just as a human teacher can accumulate more knowledge and improve his/her
teaching skills through more teaching practices. To achieve that, we assume the loss function takes
the form of neural network whose coefficients are determined via a parametric teacher model, which
is also a neural network. The parameters of the teacher model can be automatically optimized in
the teaching process. Through optimization, the teacher keeps improving its teaching model and
consequently the quality of loss functions it outputs. We name our method as learning to teach with
dynamic loss functions (L2T-DLF).

Figure 1: The student model is
trained via minimizing the dynamic
loss functions taught by the teacher
model (yellow curve). The bottom
black plane represents the parame-
ter space of student model and the
four colored mesh surfaces denote
different loss functions outputted vi-
a teacher model at different phases
of student model training.

The eventual goal of the teacher model is that its output can
serve as the loss function of the student model to maximize
the long-term performance of the student, measured via a task-
specific objective such as 0-1 accuracy in classification and
BLEU score in sequence prediction [41], on a stand-alone de-
velopment dataset. Learning a good teaching model is not triv-
ial, since on the one hand the task-specific objective is usually
non-smooth w.r.t. student model outputs, and on the other hand
the final evaluation of the student model is incurred on the dev
set, disjoint with the training dataset where the teaching process
actually happens. We design an efficient gradient based opti-
mization algorithm to optimize teacher models. Specifically, to
tackle the first challenge, we smooth the task-specific measure
to its expected version where the expectation is taken on the
direct output of student model. To address the second challenge,
inspired by Reverse-Mode Differentiation (RMD) [6, 7, 38],
through reversing the stochastic gradient descent training pro-
cess of the student model, we obtain derivatives of the param-
eters of the teacher model via chaining backwards the error
signals incurred on the development dataset .

We demonstrate the effectiveness of L2T-DLF on various real-
world tasks including image classification and neural machine
translation with different student models such as multi-layer
perception networks, convolutional neural networks and sequence-to-sequence models with attention.
The improvements clearly demonstrate the effectiveness of the new loss function learnt by L2T-DLF.

2



2 Related Work

The study of teaching for AI, inspired by human teaching process, has a long history [1, 17]. The
most recent efforts of teaching mainly focus on the level of training data selection. For example,
the machine teaching [56, 34, 35] literature targets at building the smallest training set to obtain a
pre-given optimal student model. A teaching strategy is designed in [18, 19] to iteratively select
unlabeled data to label within the context of multi label propagation, in a similar manner with
curriculum learning [8, 27]. Furthermore there are research on pedagogical teaching inspired from
cognitive science [44, 23, 39] in which a teacher module is responsible for providing informative
examples to the learner for the sake of understanding a concept rapidly.

The recent work learning to teach (L2T) [13] offers a more comprehensive view of teaching for AI,
including training data teaching, loss function teaching and hypothesis space teaching. Furthermore,
L2T breaks the strong assumption towards the existence of an optimal off-the-shelf student model
adopted by previous machine teaching literature [56, 35]. Our work belongs to the general framework
of L2T, with a particular focus on a thorough landscape of loss function teaching, including the
detailed problem setup and efficient solution for dynamically setting loss functions for training
machine learning models.

Our work, and the more general L2T, leverages automatic techniques to bypass human prior knowl-
edge as much as possible, which is in line with the principles of learning to learn and meta learn-
ing [43, 50, 2, 57, 37, 29, 10, 14]. What makes our work different with others, from the technical
point of view, is that: 1) we leverage gradient based optimization method rather than reinforce-
ment learning [57, 13]; 2) we need to handle the difficulty when the error information cannot be
directly back propagated from the loss function, since we aim at discovering the best loss function
for the machine learning models. We design an algorithm based on Reverse-Mode Differentiation
(RMD) [7, 38, 15] to tackle such a difficulty.

Specially designed loss functions play important roles in boosting the performances of real-world
tasks, either by approximating the non-smooth task-specific objective such as 0-1 accuracy in
classification [40], NDCG in ranking [49], BLEU in machine translation [45, 3] and MAP in object
detection [22, 46], or easing the optimization process of the student model such as overcoming the
difficulty brought by data imbalance [30, 32] and numerous local optima [20]. L2T-DLF differs from
prior works in that: 1) the loss functions are automatically learned, covering a large space and without
the demand of heuristic understanding for task specific objective and optimization process; 2) the
loss function dynamically evolves during the training process, leading to a more coherent interaction
between loss and student model.

3 Model

In this section, we introduce the details of L2T-DLF, including the student model and the teacher
model, as well as the training strategy for optimizing the teacher model.

3.1 Student Model

For a task of interest, we denote its input space and output space respectively as X and Y . The student
model for this task is then denoted as fω : X → Y , with ω as its weight parameters. The training of
student model fω is an optimization process that discovers a good weight parameter ω∗ within a hy-
pothesis space Ω, by minimizing a loss function l on the training dataDtrain containingM data points
Dtrain = {(xi, yi)}Mi=1. Specifically ω∗ is obtained via solving minω∈Ω

∑
(x,y)∈Dtrain l(fω(x), y).

For the convenience of description, we define a new notation L(fω, D) =
∑

(x,y)∈D l(fω(x), y)

where D is a dataset and will simultaneously name L as loss function when the context is clear. The
learnt student model fω∗ is then evaluated on a test data set Dtest = {(xi, yi)}Ni=1 to obtain a score
M(fω∗ , Dtest) =

∑
(x,y)∈Dtest m(fω∗(x), y), as its performance. Here the task specific objective

m(y1, y2) measures the similarity between two output candidates y1 and y2.

The loss function l(ŷ, y), taking the model prediction ŷ = fω(x) and ground-truth y as inputs, acts as
the surrogate of m to evaluate the student model fω during its training process, just as the exams in
real-world human teaching. We assume l(ŷ, y) is a neural network with some coefficients Φ, denoted
as lΦ(ŷ, y). It can be a simple linear model, or a deep neural network (some concrete examples
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are provided in section 4.1 and section 4.2). With such a loss function lΦ(ŷ, y) (and the induced
notation LΦ), the student model gets sequentially updated via minimizing the output value of lΦ by,
for example, stochastic gradient descent (SGD): ωt+1 = ωt − ηt

∂LΦ(fωt ,D
t
train)

∂ωt
, t = {1, 2, · · · , T},

where Dt
train ⊆ Dtrain, ωt and ηt is respectively the mini-batch training data, student model weight

parameter and learning rate at t-th timestep. For ease of statement we simply set ω∗ = ωT .

3.2 Teacher Model

A teacher model is responsible for setting the proper loss function l to the student model by outputting
appropriate loss function coefficients Φ. To cater for different status of student model training, we
ask the teacher model to output different loss functions lt at each training step t. To achieve that, the
status of a student model is represented by a state vector st at timestep t, which contains for example
the current training/dev accuracy and iteration number. The teacher model, denoted as µ, then takes
st as inputs to compute the coefficients of loss function Φt at t-th timestep as Φt = µθ(st), where
θ is the parameters of the teacher model. We further provide some examples of µθ in section 4.1
and section 4.2. The actual loss function for student model is then lt = lΦt . The learning process of
student model then switches to:

ωt+1 = ωt − ηt
∂LΦt(fωt , D

t
train)

∂ωt
= ωt − ηt

∂Lµθ(st)(fωt , D
t
train)

∂ωt
. (1)

Such a sequential procedure of obtaining fω∗ (i.e., fωT ) is the learning process of the student model
with training data Dtrain and loss function provided via the teacher model µθ, and we use an abstract
operator F to denote it: fω∗ = F(Dtrain, µθ).

Just as the training and testing setup in typical machine learning scenarios, the teacher model here
similarly follows the two phases setup. Specifically, in the training process of teacher model, similar
to qualified human teachers are good at improving the quality of exams, the teacher model in L2T-DLF
refines the loss function it sets up via optimizing its own θ. The ultimate goal of teacher model is to
maximize the performance of induced student model on a stand-alone development dataset Ddev:

max
θ
M(fω∗ , Ddev) = max

θ
M(F(Dtrain, µθ), Ddev). (2)

We introduce the detailed training process (i.e., how to efficiently optimize Eqn. (2)) in section 3.3.
In the testing process of the teacher model, θ is fixed and the student model fω gets updated with the
guidance of teacher model µθ, as specified in Eqn. (1).

3.3 Training Process of Teacher Model

There are two challenges to optimize teacher model: 1) the evaluation measure m is typically non-
smooth and non-differentiable w.r.t. the parameters of student model; 2) the error is incurred on dev
set while the teacher model plays effect in training phase.

We use continuous relaxation of m to tackle the first challenge. The main idea is to inject random-
ness into m to form an approximated version m̃, where the randomness comes from the student
model [49]. Thanks to the fact that quite a few student models output probabilistic distributions on
Y , the randomness naturally comes from the direct outputs of fω. Specifically, to approximate the
performance of fω on a test data sample (x, y), we have m̃(fω(x), y) =

∑
y∗∈Y m(y∗, y)pω(y∗|x),

where pω(y∗|x) is the probability of predicting y∗ given x using fω. The gradient of ω is then
easy to obtain via ∂m̃(fω(x),y)

∂ω =
∑
y∗∈Y m(y∗, y)∂pω(y∗|x)

∂ω . We further introduce a new notation
M̃(fω, Ddev) =

∑
(x,y)∈Ddev m̃(fω(x), y) which approximates the objective of the teacher model

M(fωT , Ddev).

We use Reverse-Mode Differentiation (RMD) [6, 7, 38] to fill in the gap between training data and
development data. To better show the RMD process, we can view the sequential process in Eqn. (1)
as a special feed-forward process of a deep neural network where each t corresponds to one layer,
and RMD corresponds to the backpropagation process looping the SGD process backwards from T
to 1. Specifically denote dθ as the gradient of M̃(fωT , Ddev) w.r.t. the teacher model parameters
θ, which has initial value dθ = 0. On the dev dataset Ddev, the gradient of M̃(fω, Ddev) w.r.t. the
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parameter of student model ωT is calculated as

dωT =
∂M̃(fωT , Ddev)

∂ωT
=

∑
(x,y)∈Ddev

∂m̃(fωT (x), y)

∂ωT
. (3)

Then looping backwards from T and corresponding to Eqn. (1), at each step t = {T − 1, · · · , 1} we
have

dωt =
∂M̃(fωt , Ddev)

∂ωt
= dωt+1 − ηt

∂2Lµθ(st)(fωt , D
t
train)

∂ω2
t

dωt+1. (4)

At the same time, the gradient of M̃ w.r.t. θ is accumulated at this time step as:

dθ = dθ − ηt
∂2Lµθ(st)(fωt , D

t
train)

∂θ∂ωt
dωt+1. (5)

We leave the detailed derivations for Eqn. (4) and (5) to Appendix. Furthermore it is worth-noting that
the computing of dωt and dθ involves hessian vector product, which can be effectively computed via
∂2g
∂x∂yv = ∂(∂g∂y v)/∂x, without explicitly calculating the Hessian matrix. Reverting backwards from
t = T to t = 1, we obtain dθ and then θ is updated using any gradient based optimization algorithm
such as momentum SGD, forming one step optimization for θ which we call teacher optimization
step. By iterating teacher optimization steps we obtain the final teacher model. The details are listed
in Algorithm 1.

Algorithm 1 Training Teacher Model µθ
Input: Continuous relaxation m̃. Initial value of θ.
while Teacher model parameter θ not converged do . One teacher optimization step

Randomly initialize student model parameter ω0.
for each time step t = 0, · · · , T − 1 do . Teach student model

Conduct student model training step via Eqn. (1).
end for
dθ = 0. Compute dωT via Eqn. (3).
for each time step t = T − 1, · · · , 0 do . Reversely calculating the gradient dθ

Update dθ as Eqn. (5).
Compute dωt as Eqn. (4).

end for
Update θ using dθ via gradient based optimization algorithm.

end while
Output: the final teacher model µθ.

3.4 Discussion

Another possible way to conduct teacher model optimization is through deep reinforcement learning.
By treating the teacher model as a policy outputting continuous action (i.e., the loss function), one
can leverage continuous control algorithm such as DDPG [31] to optimize teacher model. However,
reinforcement learning algorithms, including Q-learning based ones such as DDPG are sample
inefficient, probably requiring huge amount of sampled trajectories to approximate the reward using
a critic network. Considering the training of student model is typically costly, we resort to gradient
based optimization algorithms instead.

Furthermore, there are similarity between L2T-DLF and actor-critic (AC) method [5, 48] in rein-
forcement learning (RL), in which a critic (corresponding to the parametric loss function) guides the
optimization of an actor (corresponding to the student model). Apart from the difference within appli-
cation domain (supervised learning versus RL), there are differences between the design principle of
L2T-DLF and AC. For AC, by treating student model as actor, the student model output (e.g., fωt(xt))
is essentially the action at timestep t, fed into the critic to output an approximation to the future
reward (e.g., dev set accuracy). This is typically difficult since: 1) the student model output (i.e., the
action) at a particular step t is weakly related with the final dev performance. Therefore optimizing its
action with the guidance from critic network is largely meaningless; 2) the approximation to the future
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(a) loss function (b) teacher model

Figure 2: Left: the bilinear neural network specifying the loss function lΦt(pω, y) = −σ(~y′Φt log pw).
Right: the teacher model outputting Φt via attention mechanism:Φt = µθ(st) = Wsoftmax(V st).

reward is hard given the performance measure is highly non-smooth. As a comparison, L2T-DLF is
more general in that at each timestep: 1) the teacher model considers the overall status of the student
model for the sake of optimizing its parameters, rather than the instant action (i.e., the direct output);
2) the teacher model outputs a loss function with the goal of maximizing, but not approximating the
future reward. In that sense, L2T-DLF is more appropriate to real world applications.

4 Experiments

We conduct comprehensive empirical verifications of the proposed L2T-DLF, in automatically dis-
covering the most appropriate loss functions for student model training. The tasks in our experiments
come from two domains: image classification, and neural machine translation.

4.1 Image Classification

The evaluation measure m here is the 0-1 accuracy: m(y1, y2) = 1y1=y2
where 1 is the 0-1

indicator function. The student model fω can be a logistic classifier specifying a softmax distribution
pω(y|x) = exp (w′yx+ by)/

∑
y∗∈Y exp (w′y∗x+ by∗) with ω = {wy∗ , by∗}y∗∈Y . The class label

is predicted as ŷ = arg maxy∗∈Y pω(y∗|x) given input data x. Instead of imposing loss on ŷ
and ground-truth y, for the sake of efficient optimization l typically takes the direct model output
pω and y as inputs. For example, the most widely adopted loss function l is cross-entropy loss
l(pω, y) = − log pω(y|x), which could be re-written in vector form l(pω, y) = −~y′ log pω, where
~y ∈ {0, 1}|Y| is a one-hot representation of the true label y, i.e., ~yj = 1j=y,∀j ∈ Y , ~y′ is the
transpose of ~y and pw ∈ R|Y| is the probabilities for each class outputted via fω .

Generalizing the cross entropy loss, we set the loss function coefficients Φ as a matrix inter-
acting between log pw and ~y, which switches loss function at t-th timestep into lΦt(pω, y) =
−σ(~y′Φt log pw),Φt ∈ R|Y|×|Y|, as is shown in Fig. 2(a). σ is the sigmoid function. The teacher
model µθ here is then responsible for setting Φt according to the state feature vector of student model
st: Φt = µθ(st). One possible form of the teacher model is a neural network with attention mechanis-
m (shown in Fig. 2(b)): Φt = µθ(st) = Wsoftmax(V st), where W ∈ R|Y|×|Y|×N , V ∈ RN×|st|
constitute the teacher model parameter set θ, N = 10 is the number of keys in attention mechanism.
The state vector st is a 13 dimensional vector composing of 1) the current iteration number t; 2)
current training accuracy of fω; 3) current dev accuracy of fω; 4) current precision of fω for the 10
classes on the dev set, all normalized into [0, 1].

We choose three widely adopted datasets: the MNIST, CIFAR-10 and CIFAR-100 datasets. For
the sake of showing the robustness of L2T-DLF, the student models we choose cover a wide range,
including multi-layer perceptron (MLP), plain convolutional neural network (CNN) following LeNet
architecture [28], and advanced CNN architecture including ResNet [21], Wide-ResNet [55] and
DenseNet [24]. For all the student models, we use momentum stochastic gradient descent to perform
training. In Appendix we describe the network structures of student models.

The different loss functions we compare include: 1) Cross entropy loss Lce(pω(x), y) =
− log pω(y|x), which is the most widely adopted loss function to train neural network model;
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Table 1: The recognition results (error rate %) on MNIST dataset.

Student Model/
Loss

Cross
Entropy [11] Smooth [40] Large-Margin

Softmax [36] L2T-DLF

MLP 1.94 1.89 1.83 1.69
LeNet 0.98 0.94 0.88 0.77

Table 2: The recognition results (error rate %) on CIFAR-10 (C10) and CIFAR-100 (C100) dataset

Student Model/
Loss

Cross
Entropy [11] Smooth [40] Large-Margin

Softmax [36] L2T-DLF

C10/C100 C10/C100 C10/C100 C10/C100

ResNet-8 12.45/39.79 12.08/39.52 11.34/38.93 10.82/38.27
ResNet-20 8.75/32.33 8.53/32.01 8.02/31.65 7.63/30.97
ResNet-32 7.51/30.38 7.42/30.12 7.01/29.56 6.95/29.25
WRN 3.80/- 3.81/- 3.69/- 3.42/-
DenseNet-BC 3.54/- 3.48/- 3.37/- 3.08/-

2) The smooth 0-1 loss proposed in [40]. It optimizes a smooth version of 0-1 accuracy in bi-
nary classification. We extend it to handle multi-class case by modifying the loss function as
Lsmooth(pω(x), y) = − log σ(K(log pω(y|x) − maxy∗ 6=y log pω(y∗|x))). It is not difficult to ob-
serve when K → +∞, −Lsmooth exactly matches the 0-1 accuracy. We choose the value of K to be
50 according to the performance on dev set; 3) The large-margin softmax loss in [36] denoted as Llm,
which aims to enhance discrimination between different classes via maximizing the margin induced
by the angle between x and a target class representation wy . We use the open-sourced code released
by the authors in our experiment; 4) The loss function discovered via the teacher in L2T-DLF. The
teacher models are optimized with Adam [26] and the detailed setting is in Appendix.

The classification results on MNIST, CIFAR-10 and CIFAR-100 are respectively shown in Table 1
and 2. As can be observed, on all the three tasks, the dynamic loss functions outputted via teacher
model help to cultivate better student model. For example, the teacher model helps WRN to achieve
3.42% classification error rate on CIFAR-10, which is on par with the result discovered via automatic
architecture search (e.g., 3.41% of NASNet [57]). Furthermore, our dynamic loss functions for
DenseNet on CIFAR-10 reduces the error rate of DenseNet-BC (k=40) from 3.54% to 3.08%, where
the gain is a non-trival margin.

4.1.1 Teacher Optimization

In Fig. 3, we provide the dev measure performance along with the teacher model optimization in
MNIST experiment, the student model is LeNet. It can be observed that the dev measure is increasing
along with the teacher model optimizing, and finally converges to a high score.

4.1.2 Analysis Towards the Loss Functions

To better understand the loss functions outputted via teacher model, we visualize the coefficients of
some loss functions outputted by teacher model for training ResNet-8 in CIFAR-100 classification
task. Specifically, note that the loss function lΦt(pω, y) = −σ(~y′Φt log pw) essentially characterizes
the correlations among different classes via the coefficients Φt. Positive Φt(i, j) value means positive
correlation between class i and j that their probabilities should be jointly maximized whereas negative
value imposes negative correlation and higher discrimination between the two classes i and j. We
choose two classes in CIFAR-100: the Otter and Baby as class i and for each of them pick several
representative classes as class j. The corresponding Φt(i, j) values are visualized in Fig. 4, with
t = 20, 40, 60 denoting the coefficients outputted via teacher model at t-th epoch of student model
training. As can be observed, at the initial phase of training student model (t = 20), the teacher
model chooses to enhance the correlation between two similar classes, e.g, Otter and Dolphin, Baby
and Boy, for the sake of speeding up training. Comparatively, when the student model is powerful
enough (t = 60), the teacher model will force it to perform better in discriminating two similar
classes, as indicated via the more negative coefficient values Φt(i, j). The variation of Φt(i, j)
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Figure 3: Measure score on the MNIST dev set along the teacher model optimization. The student
model is LeNet.

(a) Class Otter (b) Class Baby

Figure 4: Coefficient matrix Φt outputted via teacher model. The y-axis (20, 40, 60) corresponds to
the different epochs of the student model training. Darker color means the coefficients value are more
negative while shallower color means more positive. In each figure, the leftmost two columns denote
similar classes and the rightmost three columns represent dissimilar classes.

values w.r.t. t well demonstrates the teacher model captures the status of student model in outputting
correspondingly appropriate loss functions.

4.2 Neural Machine Translation

In the task of neural machine translation (NMT), the evaluation measure m(ŷ, y) is typically the
BLEU score [41] between the translated sentence ŷ and ground-truth reference y. The student model
fω is a neural network performing sequence-to-sequence generation based on models including
RNN [47], CNN [16] and self-attention network [51]. The decoding process of fω is typically
autoregressive, in that fω factorizes the translation probability as pω(y|x) =

∏|y|
r=1 pω(yr|x, y<r).

Here pω(·|x, y<r) is the distribution on target vocabulary V at the r-th position, taking the source side
sentence x and the previous words y<r as inputs. Similar to the classification task, the loss function
generalizing cross entropy loss is lΦ = −

∑|y|
r=1 σ(~y′rdiag(Φ) log pω(·|x, y<r)), where Φ ∈ R|V| is

the coefficients of the loss function and diag(Φ) denotes the diagnoal matrix with Φ as its diagonal
elements. Here we set the interaction matrix as diagonal mainly for the sake of computational
efficiency, since the target vocabulary size |V| is usally very large (e.g., 30k). The teacher model then
outputs Φt at timestep t taking st as input: Φt = µθ(st) = Wsoftmax(V st), where teacher model
parameter θ = {W ∈ R|V|×N , V ∈ RN×|st|}. We set N = 5 and for the state vector st, it is the

8



Table 3: The translation results (BLEU score) on IWSLT-14 German-English task.

Student Model/
Loss

Cross
Entropy [52] RL [42] AC [3] Softmax-Margin [12] L2T-DLF

LSTM-1 27.28 27.53 27.75 28.12 29.52
LSTM-2 30.86 31.03 31.21 31.22 31.75

Transformer 34.01 34.32 34.34 34.46 34.80

same with that in classification except: 1) the training/dev set accuracy is now replaced with BLEU
scores; 2) the last ten features in st for classification are ignored, leading to |st| = 3.

We choose a widely used benchmark dataset in NMT literature [42, 54, 53], released in IWSLT-14
German-English evaluation campaign [9], as the test-bed for different loss functions. The student
model fω for this task is based on LSTM with attention [4]. For the sake of fair comparison
with previous works [3, 42], we use single layer LSTM model as fω and name it as LSTM-1. To
further verify the effectiveness of L2T-DLF, we use a deeper translation model stacking two LSTM
layers as fω. We denote such stronger student model as LSTM-2. Furthermore, we also evaluate
our L2T-DLF on the Transformer [51] network. The Transformer architecture is based on the
self-attention mechanism [33], and it achieves superior performance on several NMT tasks. Both
LSTM/Transformer student models are trained with simple SGD. In Appendix we provide the details
of the LSTM/Transformer student models and the training settings of student/teacher models.

The loss functions we leverage to train student models include: 1) Cross entropy loss Lce to perform
maximum likelihood estimation (MLE) for training LSTM/Transformer model with teacher forc-
ing [52]; 2) The reinforcement learning (RL) loss Lrl, a.k.a, sequence level training [42] or minimum
risk training [45], targets at directly optimizing the BLEU scores for NMT models. A typical RL loss
is Lrl(pω(x), y) = −

∑
y∗∈Y log pω(y∗|x)(BLEU(y∗, y)− b), where b is the reward baseline and

Y is the candidate subset; 3) The loss specified via actor-critic (AC) algorithm Lac [3], which approx-
imates the BLEU score via a critic network; 4) The softmax-margin loss, which is empirically shown
to be the most effective structural prediction loss for NMT [12]; 5) The loss function discovered via
our L2T-DLF.

We report the experimental results in Table 3. From the table, we can clearly observe the dynamic loss
functions outputted via our teacher model can guide the student model to have superior performance
compared with other specially designed loss functions. Specifically, with a shallow student model
LSTM-1, we improve the BLEU score by more than 2.0 points compared with predefined cross-
entropy loss. In addition, our LSTM-2 student model achieves 31.75 BLEU score and it surpasses
previously reported best result 30.08 by [25] on IWSLT-14 German-English achieved via RNN/LSTM
models. With a much stronger Transformer student model, we also improve the model performance
from BLEU score 34.01 to 34.80. The above results clearly demonstrate the effectiveness of our
L2T-DLF approach.

5 Conclusion

In contrast to expert designed and fixed loss functions in conventional machine learning systems,
we in this paper study how to learn dynamic loss functions so as to better teach a student machine
learning model. Since loss functions provided by the teacher model dynamically change with respect
to the growth of the student model and the teacher model is trained through end-to-end optimization,
the quality of the student model gets improved significantly, as shown in our experiments. We hope
our work will stimulate and inspire the research community to automatically discover loss functions
better than expert designed ones. As to future work, we would like to conduct empirical verification
on tasks with more powerful student models and larger datasets. We are also interested in trying more
complicated teacher models such as deeper neural networks.
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