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Abstract

This paper considers the learning of Boolean rules in either disjunctive normal
form (DNF, OR-of-ANDs, equivalent to decision rule sets) or conjunctive normal
form (CNF, AND-of-ORs) as an interpretable model for classification. An integer
program is formulated to optimally trade classification accuracy for rule simplicity.
Column generation (CG) is used to efficiently search over an exponential number
of candidate clauses (conjunctions or disjunctions) without the need for heuristic
rule mining. This approach also bounds the gap between the selected rule set and
the best possible rule set on the training data. To handle large datasets, we propose
an approximate CG algorithm using randomization. Compared to three recently
proposed alternatives, the CG algorithm dominates the accuracy-simplicity trade-
off in 8 out of 16 datasets. When maximized for accuracy, CG is competitive with
rule learners designed for this purpose, sometimes finding significantly simpler
solutions that are no less accurate.

1 Introduction

Interpretability has become a well-recognized goal for machine learning models. The need for
interpretable models is certain to increase as machine learning pushes further into domains such as
medicine, criminal justice, and business, where such models complement human decision-makers and
decisions can have major consequences on human lives. Transparency is thus required for domain
experts to understand, critique, and trust models, and reasoning is required to explain individual
decisions.

This paper considers Boolean rules in either disjunctive normal form (DNF, OR-of-ANDs) or con-
junctive normal form (CNF, AND-of-ORs) as a class of interpretable models for binary classification.
An example of a DNF rule with two clauses is “IF (# accounts < 5) OR (# accounts � 7 AND debt
> $1000) THEN risk = high”. Particularly desirable for interpretability are compact Boolean rules
with few clauses and conditions in each clause.

DNF classification rules are also referred to as decision rule sets, where each conjunction is considered
an individual rule, rules are unordered, and a positive prediction is made when at least one of the
rules is satisfied. Rule sets stand in contrast to decision lists [44, 35, 49, 3, 34, 53], where rules are
ordered in an IF-ELSE sequence, and decision trees [11, 43, 6], where they are organized into a tree
structure. While the latter two classes are also considered interpretable, the metrics for measuring
their complexity are different and not directly comparable [27]. Moreover, a user study [33] has
quantified the extra effort involved in understanding decision lists due to the need to account for the
negations of all preceding rules.

The learning of Boolean rules and rule sets has an extensive history spanning multiple fields. DNF
learning theory (e.g. [47, 32, 24]) focuses on the ideal noiseless setting (sometimes allowing arbitrary
queries) and is less relevant to the practice of learning compact models from noisy data. Predominant
practical approaches include a covering or separate-and-conquer strategy ([15, 14, 16, 26, 28, 40],
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see also the survey [30]) of learning rules one by one and removing “covered” examples, a bottom-
up strategy of combining more specific rules into more general ones [45, 22, 41], and associative
classification in which association rule mining is followed by rule selection using various criteria
[38, 36, 54, 50, 12, 13]. Broadly speaking, these approaches employ heuristics and/or multiple
criteria not directly related to classification accuracy. Moreover, they do not explicitly consider model
complexity, a problem that has been noted especially with associative classification. Rule set models
have been generalized to rule ensembles [17, 29, 20], using boosting and linear combination rather
than logical disjunction; the interpretability of such models is again not comparable to rule sets.
Models produced by logical analysis of data [9, 31] from the operations research community are
similarly weighted linear combinations.

In recent years, spurred by the demand for interpretable models, several researchers have revisited
Boolean and rule set models and proposed methods that jointly optimize accuracy and simplicity
within a single objective function. These works however have both restricted the problem and
approximated its solution. In [33, 52, 51], frequent rule miners are first used to produce a set of
candidate rules. A greedy forward-backward algorithm [33], simulated annealing [52], or integer
programming (IP) (in an unpublished manuscript [51]) are then used to select rules from the candidates.
The drawback of rule mining is that it limits the search space while often still producing a large
number of rules, which then have to be filtered using criteria such as information gain. [51] also
presented an IP formulation (but no computational results) that jointly constructs and selects rules
without pre-mining. [46] developed an IP formulation for DNF and CNF learning in which the
number of clauses (conjunctions or disjunctions) is fixed. The problem is then solved approximately
by decomposing into subproblems and applying a linear programming (LP) method [39], which
requires rounding of fractional solutions.

In this paper, we also propose an IP formulation for Boolean rule (DNF or CNF) learning but one that
avoids the above limitations. Rather than mining rules, we use the large-scale optimization technique
of column generation (CG) to intelligently search over the exponential number of all possible clauses,
without enumerating even a pre-mined subset (which can be large). Instead, only those clauses that
can improve the current solution are generated on the fly. In practice, our approach solves the IP
formulation to provable optimality for smaller datasets. For large datasets we employ an approximate
version of CG by randomly selecting samples and candidate features that can be used in a clause.
To speed up computation, we also generate additional clauses using a greedy algorithm that still
optimizes the correct objective.

A numerical evaluation is presented using 16 datasets, including one from the ongoing FICO Ex-
plainable Machine Learning Challenge [1]. In terms of the trade-off achieved between accuracy and
rule simplicity, our CG algorithm dominates three other recent proposals on 8 datasets, whereas each
of the others dominates on at most two. When optimized for accuracy using cross-validation, CG
remains competitive with rule learners such as RIPPER [16] that are designed for maximum accuracy.
In some instances it provides significantly less complex models with no sacrifice in accuracy.

We note that CG has been proposed for other machine learning tasks such as boosting [21, 7] and
hash learning [37]. In [21] however, the pricing problem (see Section 2.2) is solved approximately by
a weak learning algorithm (“weak” in the boosting sense), not IP, whereas in [7], pricing can be done
tractably through enumeration.

2 Problem formulation

We consider supervised binary classification given a training dataset of n samples (xi, yi), i =
1, . . . , n with labels yi 2 {0, 1}. Let the set {1, . . . , n} be partitioned into P [ Z where P contains
the indices of the samples with label yi = 1 and Z contains the ones with label yi = 0. For
the problem formulation in this section, all features Xj , j 2 J = {1, . . . , d}, are assumed to be
binary-valued as well; binarization of numerical and categorical features is discussed in Section 4.

The presentation focuses on the problem of learning a Boolean classifier ŷ(x) in DNF (OR-of-ANDs).
Given a DNF and binary-valued features, a clause corresponds to a conjunction of features and a
sample satisfies a clause if it has all features contained in the clause (i.e. xij = 1 for all such features
j). Since a DNF classifier is equivalent to a rule set, the terms clause, conjunction, and (single) rule
(within a rule set) are used interchangeably. As shown in [46] using De Morgan’s laws, the same

2



formulation applies equally well to CNF learning by negating both labels yi and features xi. The
method can also be extended to multi-class classification in the usual one-versus-rest manner.

2.1 An integer program to minimize Hamming loss

Our objective is to minimize the Hamming loss of the rule set as is also done in [46, 33]. For each
incorrectly classified sample, the Hamming loss counts the number of clauses that have to be selected
or removed to classify it correctly. More precisely, it is equal to the number of samples with label 1
that are classified incorrectly (false negatives) plus the sum of the number of selected clauses that
each sample with label 0 satisfies. Thus while each false negative contributes one unit to this loss
function, representing a single clause that needs to be selected, a false positive would contribute more
than one unit if it satisfies multiple clauses, which must all be removed.

We bound the complexity of the rule set by a given parameter C, both to prevent over-fitting and to
control complexity. For concreteness, we define the complexity of a clause to be a fixed cost of one
plus the number of conditions in the clause; other linear combinations can be handled equally well.
The total complexity of a rule set is defined as the sum of the complexities of its clauses. Alternatively,
it is possible to include an additional term in the objective function to penalize complexity but we
find it more natural to explicitly bound the maximum complexity as it can offer better control in
applications where interpretable rules are preferred. Clearly it is also possible to use both a constraint
and a penalty term.

We express the above notions of Hamming loss and complexity in an integer program (IP) that is not
practical for real-life datasets as written but is useful to explain the conceptual framework behind
our approach. Let K denote the collection of all possible (exponentially many) clauses involving
Xj , j 2 J and Ki ✓ K contain the clauses satisfied by sample i for all i 2 P [ Z . Note that as
the features Xj are binary, |K| is indeed bounded. Letting decision variable wk for k 2 K denote
whether clause k is used in the rule set, ck denote the complexity of clause k 2 K, and ⇠i for i 2 P
denote the positive samples classified incorrectly, we have the following IP:

zMIP = min
X

i2P
⇠i +

X

i2Z

X

k2Ki

wk (1)

s.t. ⇠i +
X

k2Ki

wk � 1, ⇠i � 0, i 2 P (2)

X

k2K
ckwk  C (3)

wk 2 {0, 1}, k 2 K. (4)

The objective function (1) is the Hamming loss as described. Constraints (2) identify false negatives,
which have

P
k2Ki

wk = 0 and are therefore not “covered” by any selected clauses. Note that
wk being binary implies that ⇠i 2 {0, 1} in any optimal solution because of the objective function.
Constraint (3) bounds the complexity of the rule set. We call this formulation the Master IP (MIP)
and call its linear programming (LP) relaxation, obtained by dropping the integrality constraint (4),
the Master LP (MLP), denoting its optimal value by zMLP . It is also possible to weight the two
terms in the objective (1) differently, for example to balance unequal classes, but we do not pursue
that variation here.

2.2 Column generation framework

Clearly it is only practical to solve the Master IP for very small datasets. Moreover, even solving the
Master LP explicitly is often intractable due to the fact that it has exponentially many variables. An
effective way to solve such large LPs is to use the column generation framework [4, 18] where only a
small subset of all possible wk variables (clauses) is generated explicitly and the optimality of the LP
is guaranteed by iteratively solving a pricing problem.

To apply this framework to the MIP, the first step is to restrict the formulation by replacing the set K
with a very small subset of it and explicitly solve the LP relaxation of the resulting smaller problem,
which we call the Restricted MLP. Any optimal solution of the Restricted MLP can be extended to a
solution of MLP with the same objective value by setting all missing wk variables to zero, and thus
provides an upper bound on zMLP . Such a solution can potentially be improved by augmenting the
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Restricted MLP with additional variables corresponding to some of the missing clauses. The second
step is to identify such clauses without explicitly considering all of them. Repeating these steps until
there are no improving clauses (i.e. variables missing from the Restricted MLP that can reduce the
cost) solves the MLP to optimality.

To find the missing clauses that can potentially improve the value of the Restricted MLP, one needs
to check if there are variables missing from the Restricted MLP that have negative reduced cost [5].
The reduced cost of a missing variable gives the maximum possible change in objective value per
unit increase in that variable’s value (when it is included in the formulation). Therefore, if all missing
variables have non-negative reduced cost, then the current Restricted MLP cannot be improved and its
optimal solution yields an optimal solution of the MLP. Furthermore, it is desirable to identify missing
variables that have large negative reduced costs as they are more likely to improve the objective value
of the Restricted MLP. To this end, we next formulate an optimization problem that uses the optimal
dual solution to the Restricted MLP. Let µi � 0 for i 2 P denote the dual variables associated with
constraints (2) and � � 0 be the dual variable associated with (3). Let �i 2 {0, 1} denote whether the
ith sample satisfies a missing clause in question. If we let c denote the complexity of the clause, then
its reduced cost is equal to X

i2Z
�i �

X

i2P
µi�i + �c. (5)

The first term in (5) is the cost of the missing clause in the objective function (1), expressed in terms
of �i. The second term is the sum of the dual variables associated with constraints (2) in which the
clause appears. The last term is the dual variable associated with constraint (3) multiplied by the
complexity of the clause.

We now formulate an IP to express clauses as conjunctions of the original features Xj , j 2 J . Let
the decision variable zj 2 {0, 1} denote if feature j 2 J is selected in the clause. Let Si correspond
to the zero-valued features in sample i 2 P [ Z , Si = {j : xij = 0}. Then the Pricing Problem
below identifies the clause missing from the Restricted MLP that has the lowest reduced cost.

zCG = min �

 
1 +

X

j2J

zj

!
�
X

i2P
µi�i +

X

i2Z
�i (6)

s.t. �i + zj  1, j 2 Si, i 2 P (7)

�i � 1�
X

j2Si

zj , �i � 0, i 2 Z (8)

X

j2J

zj  D, (9)

zj 2 {0, 1}, j 2 J. (10)

The first term in (6) expresses the complexity ck in terms of the number of selected features. Con-
straints (7), (8) ensure that the clause acts as a conjunction, i.e. it is satisfied (�i = 1) only if no
zero-valued features are selected (zj = 0 for j 2 Si). Similar to ⇠i in MIP, the variables �i do not
have to be explicitly defined as binary due to the objective function. Constraint (9) bounds the number
of features allowed in any clause in the rule set. Parameter D above can be set to C � 1 to relax this
constraint, or it can be set to a smaller number if desired to limit the clause complexity.

The optimal solution to the Pricing Problem above gives the clause with the minimum reduced cost
that is missing from the Restricted MLP. The reduced cost of this clause equals zCG and if zCG < 0,
then the corresponding variable is added to the Restricted MLP. More generally, any feasible solution
to the Pricing Problem that has a negative objective function value gives a clause with a negative
reduced cost and therefore can be added to the Restricted Restricted MLP to improve its value.

2.3 Optimality guarantees and bounds

When the column generation framework described above is repeated until zCG � 0, none of the
variables missing from the Restricted MLP have a negative reduced cost and the optimal solution of
the MLP and the Restricted MLP coincide. In addition, if the optimal solution of the Restricted MLP
turns out to be integral, then it is also an optimal solution to the MIP and therefore MIP is solved
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to optimality. If the optimal solution of the Restricted MLP is fractional, then one may have to use
column generation within an enumeration framework to solve MIP to optimality. This approach is
called branch-and-price [4] and is quite computationally intensive.

However, even when the optimal solution to the MLP is fractional, dzMLP e provides a lower bound
on zMIP as the objective function (1) has integer coefficients. This lower bound can be compared to
the cost of any feasible solution to MIP. If the latter equals dzMLP e, then, once again, MIP is solved
to optimality. As one example, a feasible solution to MIP could be obtained by solving the Restricted
MIP obtained by imposing (4) on the variables present in the Restricted MLP. More generally, any
heuristic method can generate feasible solutions to MIP.

Finally, we note that even when the MLP is not solved to optimality and the column gener-
ation procedure is terminated prematurely, a valid lower bound on zMIP can be obtained by
dzRMLP + (C/2)zCGe, where zRMLP is the objective value of the last Restricted MLP solved
to optimality. This bound is due to the fact that ck � 2 for any clause and there might be at most C/2
missing variables with reduced cost no less than zCG that can be added to the Restricted MLP [48].

3 Computational Approach

The previous section provides a sound theoretical framework for finding an optimal rule set for the
training data. For small datasets, defined loosely as having less than a couple of thousand samples and
less than a few hundred binary (binarized) features (this includes the mushroom and tic-tac-toe UCI
datasets appearing in Section 4), it is computationally feasible to employ this optimization framework
as described in Section 2. However, to handle larger datasets within a time limit of 10 or 20 minutes,
one has to sacrifice the optimality guarantees of the framework. We next describe our computational
approach to deal with larger datasets, which can be seen as an optimization-based heuristic. We
call a dataset medium if it has more than a couple of thousand samples but less than a few hundred
binary features. We call it large if it has many thousands of samples and more than several hundred
binary features. The separation of datasets into small, medium and large is done based on empirical
experiments to improve the likelihood that the Pricing Problem can produce negative reduced cost
solutions.

For medium and large datasets, the number of non-zeros in the Pricing Problem (defined as the sum
of the numbers of variables appearing in the constraints of the formulation) is at least 100,000 and
solving this integer problem in a reasonable amount of time is not always feasible. Consequently
solving the MLP to proven optimality is not likely. To deal with this practical issue, we terminate
the Pricing problem if a fixed time limit is exceeded. We use a standard mixed-integer programming
solver (CPLEX 12.7.1) to which a time limit can be provided.

While the solver is finding negative reduced cost clauses from the Pricing Problem, the presence of the
time limit matters little. If the Pricing Problem is solved to optimality within the time limit, then we
obtain a minimum reduced cost clause. Moreover, the solver might discover several negative reduced
cost clauses within the time limit and it is possible to recover all these solutions at termination (due
to optimality or time limit). To speed up the overall solution process, we add all the negative reduced
cost clauses returned by the solver to the Restricted MLP. As long as one variable with a negative
reduced cost is obtained, the column generation process continues.

Eventually, the solver will fail to find a negative reduced cost solution within the time limit. If
the solver proves that there is no such solution to the Pricing Problem, then the MLP is solved to
optimality. However, if non-existence cannot be proved within the time limit, then column generation
using the Pricing Problem has to terminate without an optimality guarantee or a valid lower bound on
the MIP. In this case, we employ a fast heuristic algorithm to continue to search for negative reduced
cost solutions and extend the process.

Our heuristic algorithm only explores clauses that have up to  features (we use  = 5 in our
experiments), and is as follows. We create all one-term clauses that can be potentially extended to
negative reduced cost clauses, and then assign each of them a score that equals the objective function
of the Pricing problem applied to the clause. For each clause size l from 1 to , we do the following:
we process all generated clauses that have l features in increasing order of their score, and for each
such clause we create new clauses by appending additional features. Whenever we find a clause
with negative reduced cost, we add it to a potential list of solutions, and then when our enumeration
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terminates (we have an upper bound on the number of generated clauses), we return the best clauses
generated by the heuristic before proceeding to the next value of l.

In addition to the time limit on the Pricing Problem, we also have a time limit on the overall column
generation process. Thus column generation terminates in two cases: 1) when an improving clause
cannot be found, either because one is proven not to exist or because one cannot be found within the
Pricing Problem time budget and the heuristic also fails to find one, or 2) when the overall time limit
is met. At this point, we solve the Restricted MIP (the integral version of the Restricted MLP) using
CPLEX, and use the solution as our classifier.

For large datasets, the Pricing Problem can have more than a million non-zeros and even solving its LP
relaxation becomes challenging. In this case the solver can rarely produce any negative reduced-cost
solutions within the time limit. To deal with this, we formulate an approximate Pricing Problem by
randomly selecting a limited number of features and samples. We pick samples uniformly with a
probability that on average leads to a formulation with a couple of thousand samples. If the resulting
Pricing Problem has more than a hundred thousand non-zeros, then we also limit the candidate
features that can form a clause. The candidate features are selected uniformly with a probability that
leads to a formulation with one hundred thousand non-zeros. We also note that for large datasets the
Restricted MLP can easily have more than one million non-zeros after generating several hundred
columns and it is faster to solve it with the interior point algorithm in CPLEX instead of simplex .

4 Numerical Evaluation

Evaluations were conducted on 15 classification datasets from the UCI repository [23] that have
been used in recent works on rule set/Boolean classifiers [39, 19, 46, 52]. In addition, we used
recently released data from the FICO Explainable Machine Learning Challenge [1]. It contains 23
numerical features of the credit history of 10, 459 individuals (9871 after removing records with all
entries missing) for predicting repayment risk (good/bad). The domain of financial services and the
clear meanings of the features combine to make it a good candidate for a rule set model. Details of
how missing and special values were treated can be found in the supplementary material (SM). Test
performance on all datasets is estimated using 10-fold stratified cross-validation (CV).

For comparison with our column generation (CG) algorithm, we considered three recently proposed
alternatives that also aim to control rule complexity: Bayesian Rule Sets (BRS) [52] and the alter-
nating minimization (AM) and block coordinate descent (BCD) algorithms from [46]. Additional
comparisons include the WEKA [25] JRip implementation of RIPPER [16], a rule set learner that is
still state-of-the-art in accuracy, and scikit-learn [42] implementations of the decision tree learner
CART [11] and Random Forests (RF) [10]. The last is an uninterpretable model intended as a
benchmark for accuracy. The SM includes further comparisons to logistic regression (LR) and
support vector machines (SVM). The parameters of BRS and FPGrowth [8], the frequent rule miner
that BRS relies on, were set as recommended in [52] and the associated code (see SM for details).
For AM and BCD, the number of clauses was fixed at 10 with the option to disable unused clauses;
initialization and BCD updating are done as in [46]. While both [46] and our method are equally
capable of learning CNF rules, for these experiments we restricted both to learning DNF rules only.

We also experimented with code made available by the authors of [33]. Unfortunately, we were
unable to execute this code with practical running time when the number of mined candidate rules
exceeded 1000. Furthermore, the code was primarily designed to handle the interval representation
of numerical features and not (, >) comparisons (see next paragraph). These limitations prevented
us from making a full comparison. The SM includes partial results from [33] that are inferior to those
from the other methods.

We used standard “dummy”/“one-hot” coding to binarize categorical variables into multiple Xj = x
indicators, one for each category x, as well as their negations Xj 6= x. For numerical features, there
are two common approaches. The first is to discretize by binning into intervals and then encode
as above with categorical features. The second is to compare with a sequence of thresholds, again
including negations (e.g. Xj  1, Xj  2 and Xj > 1, Xj > 2). For these experiments, we used
the second comparison method, as also recommended in [52, 46], with sample deciles as thresholds.
Furthermore, features were binarized in the same way for all classifiers in this comparison, which
all rely on discretization (but not for LR and SVM in the SM). Thus the evaluation controls for
binarization method in addition to using the same training-test splits for all classifiers.
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(a) Heart disease (b) FICO Explainable Machine Learning Challenge

(c) MAGIC gamma telescope (d) Musk molecules

Figure 1: Rule complexity-test accuracy trade-offs on 4 datasets. Pareto efficient points are connected
by line segments. Horizontal and vertical bars represent standard errors in the means. Overall, the
proposed CG algorithm dominates the others on 8 of 16 datasets (see the SM for the full set).

We first evaluated the accuracy-simplicity trade-offs achieved by our CG algorithm as well as BRS,
AM, and BCD, methods that explicitly perform this trade-off. For CG, we used an overall time limit
of 300 seconds for training and a time limit of 45 seconds for solving the Pricing Problem in each
iteration. Low time limits were chosen partly due to practical considerations of running the algorithm
multiple times (e.g. for CV) on many datasets, and partly to demonstrate the viability of IP with
limited computation. As in Section 2, complexity is measured as the number of rules in the rule set
plus the total number of conditions in the rules. For each algorithm, the parameter controlling model
complexity (bound C in (3), regularization parameter ✓ in [46], multiplier  in prior hyperparameter
�l = |Al| from [52]) is varied, resulting in a set of complexity-test accuracy pairs. A sample of
these plots is shown in Figure 1 with the full set in the SM. Line segments connect points that are
Pareto efficient, i.e., not dominated by solutions that are more accurate and at least as simple or vice
versa. CG dominates the other algorithms in 8 out of 16 datasets in the sense that its Pareto front
is consistently higher; it nearly does so on a 9th dataset (tic-tac-toe) and on a 10th (banknote), all
algorithms are very similar. BRS, AM, and BCD each achieve (co-)dominance only one or two times,
e.g. in Figure 1d for AM. Among cases where CG does not dominate are the highest-dimensional
datasets (musk and gas, although for the latter CG does attain the highest accuracy given sufficient
complexity) and ones where AM and/or BCD are more accurate at the lowest complexities. BRS
solutions tend to cluster in a narrow range despite varying  from 10�3 to 103.

In a second experiment, nested CV was used to select values of C for CG and ✓ for AM, BCD to
maximize accuracy on each training set. The selected model was then applied to the test set. In
these experiments, CG was given an overall time limit of 120 seconds for each candidate value of
C and the time limit for the Pricing Problem was set to 30 seconds. To offset for the decrease in
the time limit, we performed a second pass for each dataset solving the restricted MIP with all the
clauses generated for all possible choices of C. Mean test accuracy (over 10 partitions) and rule set
complexity are reported in Tables 1 and 2. For BRS, we fixed  = 1 as optimizing  did not improve
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Table 1: Mean test accuracy (%, standard error in parentheses). Bold: Best among interpretable
models; Italics: Best overall.

dataset CG BRS AM BCD RIPPER CART RF

banknote 99.1 (0.3) 99.1 (0.2) 98.5 (0.4) 98.7 (0.2) 99.2 (0.2) 96.8 (0.4) 99 .5 (0.1)
heart 78.9 (2.4) 78.9 (2.4) 72.9 (1.8) 74.2 (1.9) 79.3 (2.2) 81.6 (2.4) 82 .5 (0.7)
ILPD 69.6 (1.2) 69.8 (0.8) 71 .5 (0.1) 71 .5 (0.1) 69.8 (1.4) 67.4 (1.6) 69.8 (0.5)
ionosphere 90.0 (1.8) 86.9 (1.7) 90.9 (1.7) 91.5 (1.7) 88.0 (1.9) 87.2 (1.8) 93 .6 (0.7)
liver 59.7 (2.4) 53.6 (2.1) 55.7 (1.3) 51.9 (1.9) 57.1 (2.8) 55.9 (1.4) 60 .0 (0.8)
pima 74.1 (1.9) 74.3 (1.2) 73.2 (1.7) 73.4 (1.7) 73.4 (2.0) 72.1 (1.3) 76 .1 (0.8)
tic-tac-toe 100 .0 (0.0) 99.9 (0.1) 84.3 (2.4) 81.5 (1.8) 98.2 (0.4) 90.1 (0.9) 98.8 (0.1)
transfusion 77.9 (1.4) 76.6 (0.2) 76.2 (0.1) 76.2 (0.1) 78 .9 (1.1) 78.7 (1.1) 77.3 (0.3)
WDBC 94.0 (1.2) 94.7 (0.6) 95.8 (0.5) 95.8 (0.5) 93.0 (0.9) 93.3 (0.9) 97 .2 (0.2)

adult 83.5 (0.3) 81.7 (0.5) 83.0 (0.2) 82.4 (0.2) 83.6 (0.3) 83.1 (0.3) 84 .7 (0.1)
bank-mkt 90 .0 (0.1) 87.4 (0.2) 90 .0 (0.1) 89.7 (0.1) 89.9 (0.1) 89.1 (0.2) 88.7 (0.0)
gas 98.0 (0.1) 92.2 (0.3) 97.6 (0.2) 97.0 (0.3) 99.0 (0.1) 95.4 (0.1) 99 .7 (0.0)
magic 85.3 (0.3) 82.5 (0.4) 80.7 (0.2) 80.3 (0.3) 84.5 (0.3) 82.8 (0.2) 86 .6 (0.1)
mushroom 100 .0 (0.0) 99.7 (0.1) 99.9 (0.0) 99.9 (0.0) 100 .0 (0.0) 96.2 (0.3) 99.9 (0.0)
musk 95.6 (0.2) 93.3 (0.2) 96 .9 (0.7) 92.1 (0.2) 95.9 (0.2) 90.1 (0.3) 86.2 (0.4)
FICO 71.7 (0.5) 71.2 (0.3) 71.2 (0.4) 70.9 (0.4) 71.8 (0.2) 70.9 (0.3) 73 .1 (0.1)

accuracy on the whole (as can be expected from Figure 1). Tables 1 and 2 also include results from
RIPPER, CART, and RF. We tuned the minimum number of samples per leaf for CART and RF, used
100 trees for RF, and otherwise kept the default settings. The complexity values for CART result
from a straightforward conversion of leaves to rules (for the simpler of the two classes) and are meant
only for rough comparison.

Table 2: Mean complexity (# clauses + total # conditions, standard error in parentheses)
dataset CG BRS AM BCD RIPPER CART

banknote 25.0 (1.9) 30.4 (1.1) 24.2 (1.5) 21.3 (1.9) 28.6 (1.1) 51.8 (1.4)
heart 11.3 (1.8) 24.0 (1.6) 11.5 (3.0) 15.4 (2.9) 16.0 (1.5) 32.0 (8.1)
ILPD 10.9 (2.7) 4.4 (0.4) 0.0 (0.0) 0.0 (0.0) 9.5 (2.5) 56.5 (10.9)
ionosphere 12.3 (3.0) 12.0 (1.6) 16.0 (1.5) 14.6 (1.4) 14.6 (1.2) 46.1 (4.2)
liver 5.2 (1.2) 15.1 (1.3) 8.7 (1.8) 4.0 (1.1) 5.4 (1.3) 60.2 (15.6)
pima 4.5 (1.3) 17.4 (0.8) 2.7 (0.6) 2.1 (0.1) 17.0 (2.9) 34.7 (5.8)
tic-tac-toe 32.0 (0.0) 32.0 (0.0) 24.9 (3.1) 12.6 (1.1) 32.9 (0.7) 67.2 (5.0)
transfusion 5.6 (1.2) 6.0 (0.7) 0.0 (0.0) 0.0 (0.0) 6.8 (0.6) 14.3 (2.3)
WDBC 13.9 (2.4) 16.0 (0.7) 11.6 (2.2) 17.3 (2.5) 16.8 (1.5) 15.6 (2.2)

adult 88.0 (11.4) 39.1 (1.3) 15.0 (0.0) 13.2 (0.2) 133.3 (6.3) 95.9 (4.3)
bank-mkt 9.9 (0.1) 13.2 (0.6) 6.8 (0.7) 2.1 (0.1) 56.4 (12.8) 3.0 (0.0)
gas 123.9 (6.5) 22.4 (2.0) 62.4 (1.9) 27.8 (2.5) 145.3 (4.2) 104.7 (1.0)
magic 93.0 (10.7) 97.2 (5.3) 11.5 (0.2) 9.0 (0.0) 177.3 (8.9) 125.5 (3.2)
mushroom 17.8 (0.3) 17.5 (0.4) 15.4 (0.6) 14.6 (0.6) 17.0 (0.4) 9.3 (0.2)
musk 123.9 (6.5) 33.9 (1.3) 101.3 (11.6) 24.4 (1.9) 143.4 (5.5) 17.0 (0.7)
FICO 13.3 (4.1) 23.2 (1.4) 8.7 (0.4) 4.8 (0.3) 88.1 (7.0) 155.0 (27.5)

The superiority of CG compared to BRS, AM, and BCD is carried over into Table 1, especially for
larger datasets (bottom partition in the table). Compared to RIPPER, which is designed to maximize
accuracy, CG is very competitive. The head-to-head “win-loss” record is nearly even and on no
dataset is CG less accurate by more than 1%, whereas RIPPER is worse by ⇠ 2% on ionosphere,
liver, and tic-tac-toe. Moreover on larger datasets, CG tends to learn significantly simpler rule sets
that are nearly as or even more accurate than RIPPER, e.g. on bank-marketing, magic, and FICO.
CART on the other hand is less competitive in this experiment. Tic-tac-toe is notable in admitting an
exact rule set solution, corresponding to all positions with three x’s or or’s in a row. CG succeeds in
finding this rule set whereas the other algorithms including RF cannot quite do so.

Given our use of IP, a relevant question is whether certifiably optimal or near optimal solutions to
the Master IP can be obtained in practice. Such guarantees are most interesting when the achieved
training accuracies are low as they rule out the existence of much better solutions. Among the small
instances where the training accuracy is below 90% for CG, we are able to obtain optimal or near
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optimal solutions to the training problem for heart, liver, and transfusion. For example, for transfusion,
we can certify that the optimality gap is at most 0.7% when the bound on the complexity of the rule
set C is set to 15. Note that our IP formulation (1)-(4) solves the training problem with the Hamming
loss objective. For the medium to large datasets, we are unable to accomplish this task as we are
unable to solve the Pricing problem to optimality or near-optimality within our specified time limits.

We conclude this section with an example of a DNF rule learned by CG, specifically the one that
maximizes accuracy on the FICO data with two simple clauses:

�
NumSatTrades � 23

�
^
�
ExtRiskEstimate � 70

�
^
�
NetFracRevolvBurden  63

�

OR
�
NumSatTrades  22

�
^
�
ExtRiskEstimate � 76

�
^
�
NetFracRevolvBurden  78

�
.

According to the data dictionary provided with the FICO challenge [1], “NumSatTrades” is the
number of satisfactory accounts, “ExtRiskEstimate” is a consolidated version of some risk markers,
and “NetFracRevolvBurden” is the ratio of revolving balance to credit limit. The rules thus identify
two groups, one with more accounts and less revolving debt, the other with fewer accounts and
somewhat more revolving debt. A slightly higher (better) “ExtRiskEstimate” is required for the
second, riskier group.

5 Conclusion

We have developed a column generation algorithm for learning interpretable DNF or CNF classi-
fication rules that efficiently searches the space of rules without pre-mining or other restrictions.
Experiments have borne out the superiority of the accuracy-rule simplicity trade-offs achieved.

While the results in Table 1 are competitive with RIPPER, in some instances they fall short of the
potential suggested in the first accuracy-complexity trade-off experiment. For example on the heart
disease dataset, Figure 1a shows a maximum accuracy of 81.3% while the value resulting from CV in
Table 1 is only 78.9%. For small datasets, the challenge is variability in estimating test accuracy. For
large datasets, although we have proposed measures such as time limits and sampling to reduce the
computational burden, these measures are applied more aggressively during cross-validation when
many more instances need to be solved, thus affecting solution quality. We leave as future work
improved procedures for optimizing parameter C for accuracy.
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boosting decision rules. Data Mining and Knowledge Discovery, 21(1):52–90, Jul 2010.

[21] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming boosting via column
generation. Mach. Learn., 46(1–3):225–254, January 2002.

[22] Pedro Domingos. Unifying instance-based and rule-based induction. Mach. Learn., 24(2):141–168, 1996.

[23] Dheeru Dua and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[24] Vitaly Feldman. Learning DNF expressions from Fourier spectrum. In Proc. Conf. Learn. Theory (COLT),
pages 17.1–17.19, 2012.

[25] Eibe Frank, Mark A. Hall, and Ian H. Witten. The WEKA workbench. In Online Appendix for "Data
Mining: Practical Machine Learning Tools and Techniques". Morgan Kaufmann, 4th edition, 2016.

[26] Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimization. In Proc. Int.
Conf. Mach. Learn. (ICML), pages 144–151, 1998.

[27] Alex A. Freitas. Comprehensible classification models – a position paper. ACM SIGKDD Explor.,
15(1):1–10, 2014.

[28] Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-dimensional data. Statistics and
Computing, 9(2):123–143, April 1999.

[29] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule ensembles. Annals of Applied
Statistics, 2(3):916–954, Jul 2008.

[30] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Foundations of Rule Learning. Springer-Verlag,
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