Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)
Matthew Olson, Abraham Wyner, Richard Berk
In this paper, we use a linear program to empirically decompose fitted neural networks into ensembles of low-bias sub-networks. We show that these sub-networks are relatively uncorrelated which leads to an internal regularization process, very much like a random forest, which can explain why a neural network is surprisingly resistant to overfitting. We then demonstrate this in practice by applying large neural networks, with hundreds of parameters per training observation, to a collection of 116 real-world data sets from the UCI Machine Learning Repository. This collection of data sets contains a much smaller number of training examples than the types of image classification tasks generally studied in the deep learning literature, as well as non-trivial label noise. We show that even in this setting deep neural nets are capable of achieving superior classification accuracy without overfitting.