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Abstract

Real-world image recognition is often challenged by the variability of visual styles
including object textures, lighting conditions, filter effects, etc. Although these vari-
ations have been deemed to be implicitly handled by more training data and deeper
networks, recent advances in image style transfer suggest that it is also possible to
explicitly manipulate the style information. Extending this idea to general visual
recognition problems, we present Batch-Instance Normalization (BIN) to explicitly
normalize unnecessary styles from images. Considering certain style features
play an essential role in discriminative tasks, BIN learns to selectively normalize
only disturbing styles while preserving useful styles. The proposed normalization
module is easily incorporated into existing network architectures such as Residual
Networks, and surprisingly improves the recognition performance in various sce-
narios. Furthermore, experiments verify that BIN effectively adapts to completely
different tasks like object classification and style transfer, by controlling the trade-
off between preserving and removing style variations. BIN can be implemented
with only a few lines of code using popular deep learning frameworks.1

1 Introduction

Information described by an image generally consists of spatial and style information, such as object
shape and texture, respectively. While the spatial information usually represents the key contents of
the image, the style information often involves extraneous details that complicate recognition tasks.
Typical examples include the discrepancies in object textures caused by different camera settings and
light conditions, which disturb object classification. Despite the quantum leap of deep learning in
computer vision, visual recognition in real-world applications still suffers from these style variations
inherent in images.

Moderating the variability of image styles has been studied recently to enhance the quality of images
generated from neural networks. Instance Normalization (IN) [22] is a representative approach which
was introduced to discard instance-specific contrast information from an image during style transfer.
Inspired by this, Huang et al. [10] provided a rational interpretation that IN performs a form of style
normalization, showing simply adjusting the feature statistics—namely the mean and variance—of
a generator network can control the style of the generated image. Due to this nature, IN has been
widely adopted as an alternative to Batch Normalization (BN) in style transfer [14, 3] and generative
adversarial networks (GANs) [13, 27].

It is a reasonable assumption that IN would be beneficial not only in generative tasks but also in
discriminative tasks for addressing unnecessary style variations. However, directly applying IN to a
classification problem degrades the performance [22], probably because styles often serve as useful
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discriminative features for classification. Note that IN dilutes the information carried by the global
statistics of feature responses while leaving their spatial configuration only, which can be undesirable
depending on the task at hand and the information encoded by a feature map. For example, even
though the global brightness of an image is commonly irrelevant to object classification, it becomes
one of the key features in weather or time prediction. Similarly, the texture of a cloth may confuse
classifying clothing categories (shirts vs. skirts), but it is crucial for classifying fashion attributes
(spotted vs. striped). In short, normalizing styles in a neural network needs to be investigated with a
careful consideration.

In this paper we propose Batch-Instance Normalization (BIN) to normalize the styles adaptively to the
task and selectively to individual feature maps. It learns to control how much of the style information
is propagated through each channel of features leveraging a learnable gate parameter. If the style
associated with a feature map is irrelevant to or disturbs the task, BIN closes the gate to suppress the
style using IN. If the style carries important information to the task, on the other hand, BIN opens
the gate to preserve the style though BN. This simple collaboration of two normalization methods
can be directly incorporated into existing BN- or IN-based models, requiring only a few additional
parameters. Our extensive experiments show that the proposed approach surprisingly outperforms
BN in general object classification and multi-domain problems, and it also successfully substitutes
IN in style transfer networks.

2 Related Work

Style manipulation. Manipulating image styles or textures has been recently studied along with
the finding that the feature statistics of a convolutional neural network effectively capture the style of
an image. Cimpoi et al. [2] exploited the Fisher-Vector representation built on convolutional features,
which encodes their high-order statistics, to perform texture recognition and segmentation. Gatys et
al. [5] addressed texture synthesis by matching the second-order statistics between the source and
generated images based on the Gram matrices of feature maps, which has been extended to neural
style transfer algorithms [6, 14, 3]. Huang et al. [10] further showed that aligning only the first-order
statistics, i.e., the mean and variance, can also efficiently transfer image styles. Note that all the
above approaches focused on the tasks directly related to image styles—texture recognition, texture
synthesis, style transfer, etc. We expand the idea of manipulating style information to general image
recognition problems to resolve impeditive style variations and facilitate training.

Normalization. Batch normalization [12] (BN) has become a standard ingredient in constructing
a deep neural network, which normalizes internal activations using the statistics computed over
the examples in a minibatch. Several variants of BN such as batch renormalization [11], weight
normalization [19], layer normalization [1], and group normalization [24] have been developed mainly
to reduce the minibatch dependencies inherent in BN. Instance normalization (IN) [22] exhibits
another property of normalizing image styles by adjusting per-instance feature statistics, which is
further investigated by conditional instance normalization [3] and adaptive instance normalization [10].
The effectiveness of IN, however, has been restricted to image generation tasks such as style transfer
and image-to-image translation, because IN may dilute discriminative information that is essential
for general visual recognition. To overcome this, our proposed normalization technique combines the
advantages of BN and IN by selectively maintaining or normalizing style information, which benefits
a wide range of applications.

3 Batch-Instance Normalization

The style of an image is commonly interpreted as the information irrelevant to spatial configuration,
which is known to be captured by spatial summary statistics of feature responses in a deep convolu-
tional network [5, 6, 14, 10]. Inspired by the work of Huang et al. [10], we assume the first-order
statistics—the mean and variance—of a convolutional feature map encodes a certain style attribute.
In other words, the information carried by each feature map can be divided into two components: a
style (the mean and variance of activations) and shape (the spatial configuration of activations).

From this point of view, instance normalization (IN) can be considered as normalizing the style of
each feature map while maintaining the shape only. Although it may help to reduce undesirable style
variation, it may also cause severe loss of information if a style itself carries an essential feature for
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the task (e.g., relevant to class labels). Batch normalization (BN), on the other hand, normalizes
feature responses in a minibatch level, which preserves the instance-level style variation unless the
batch size is too small. However, it lacks the ability to address the style inconsistency that complicates
the problem. Thus, we aim to allow BN and IN to complement each other in order to selectively
preserve or normalize the style encoded by each feature map.

Let x ∈ RN×C×H×W be an input minibatch to a certain layer and xnchw denotes its nchw-th
element, where h and w indicate the spatial location, c is the channel index, and n is the index of the
example in the minibatch. BN normalizes each channel of features using the mean and variance
computed over the minibatch:
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where x̂(B) = {x̂(B)
nchw} is the batch-normalized response. On the other hand, IN normalizes each

example in the minibatch independently using per-instance feature statistics:
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where x̂(I) = {x̂(I)nchw} is the instance-normalized response. Note that the style difference between
examples is retained in x̂(B) but removed in x̂(I). Our goal is to adaptively balance x̂(B) and x̂(I) for
each channel so that an important style attribute is preserved while a disturbing one is normalized.
Batch-Instance Normalization (BIN) achieves this by introducing additional learnable parameters
ρ ∈ [0, 1]C :

y =
(
ρ · x̂(B) + (1− ρ) · x̂(I)

)
· γ + β, (3)

where γ, β ∈ RC are the affine transformation parameters and y ∈ RN×C×H×W is the output of
BIN. We constrain the elements in ρ to be in the range [0, 1] simply by imposing bounds at the
parameter update step:

ρ← clip[0,1] (ρ− η∆ρ) , (4)

where η is the learning rate and ∆ρ indicates the parameter update vector (e.g., the gradient)
determined by the optimizer. Intuitively, ρ can be interpreted as a gate vector which decides whether
to maintain or discard the style variation for each channel. If the style encoded by a channel is
important to the task, the gate value increases toward 1 and the style is preserved by BN. If a style is
unnecessary or disturbs the task, on the other hand, the corresponding gate approaches 0 to normalize
the style through IN.

In practice, we found that it is beneficial to increase the learning rate for updating ρ. It fairly matches
the theoretical aspect that the gradient of loss ` with respect to ρ tends to be small because it is
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Table 1: Top-1 accuracy (%) on CIFAR-10/100 (test set) and ImageNet (validation set) evaluated with
ResNet-110 and ResNet-18, respectively. The results on CIFAR-10/100 are reported as the average
and the 95% confidence interval over 10 repetitions.

CIFAR-10 CIFAR-100 ImageNet

BN 93.72 ± 0.18 74.26 ± 0.33 69.89
BIN 94.29 ± 0.09 75.88 ± 0.30 70.68
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Figure 1: Training curves on CIFAR-100. We compare top-1 training accuracy (left) and testing
accuracy (right) of ResNet-110 with different normalization methods. The solid lines and shaded
areas represent the average and the 95% confidence interval over 10 repetitions, respectively.

calculated by multiplying the difference between x̂(B) and x̂(I):
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where ynchw is the nchw-th element of the output y. Since the difference x̂(B) − x̂(I) has small
values especially when the style variation in the minibatch is marginal, training ρ is facilitated by
amplifying the difference using a larger learning rate.

4 Experiments

We demonstrate the effectiveness of BIN across a wide variety of scenarios in three different applica-
tions: object classification, multi-domain learning, and image style transfer. Ancillary experimental
results on character recognition are also provided in the supplementary material. Throughout all
experiments, the style gates (ρ) are initialized to 1 and trained with a learning rate multiplied by 10.
Weight decay is not applied to the gate parameters.

4.1 Object Classification

We first evaluate BIN for general object classification using CIFAR-10/100 [15] and ImageNet [18]
datasets. Deep Residual Networks [7]—ResNet-110 (32×32 input) on CIFAR-10/100 and ResNet-18
(224×224 input) on ImageNet—are employed as base architectures, which involve a BN layer after
every convolutional layer. To evaluate BIN, we simply switch the BN to BIN while keeping all other
parts unchanged. The networks are trained by SGD with a batch size of 128, an initial learning rate
of 0.1, a momentum of 0.9, and a weight decay of 0.0001. On CIFAR datasets, we train the networks
for 64K iterations, where the learning rate is divided by 10 at 32K and 48K iterations; on ImageNet,
training runs for 90 epochs, where the learning rate is divided by 10 at 30 and 60 epochs.

Comparison of normalization methods. Table 1 compares the classification results, where BIN
outperforms BN by considerable margins in all three datasets. The networks with BN and BIN use
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Figure 2: Distributions of the style gate parameters (ρ) of BIN in object classification. The lower,
middle, and upper layers correspond to the three super-layers (i.e., layer1, layer2, layer3) of
ResNet-110 [7] configured as conv1-bn1-relu-layer1-layer2-layer3-avgpool-fc.

Table 2: Top-1 accuracy (%) on CIFAR-100 with various network architectures. We follow each
author’s notation for specifying the network configuration (e.g., WRN-[depth]-[widening factor]).

AlexNet VGG-19 ResNet-56 ResNet-110

BN 50.62 72.29 72.92 74.26
BIN 51.00 72.50 75.05 75.88

PreResNet-110 WRN-28-10 ResNeXt-29, 8×64d DenseNet-BC (L100, k12)

BN 76.49 80.92 80.50 76.93
BIN 77.84 81.48 81.57 77.80

almost the same number of parameters (e.g., 1.73M and 1.74M for ResNet-110), which implies that
the performance gain is not merely a consequence of increasing model capacity. The training curves
on CIFAR-100 with varying normalization methods are also illustrated in Figure 1. BIN is compared
with not only BN, but also IN and BN+IN—a naïve ensemble of BN and IN (i.e., the ρ in BIN is
fixed to 0.5). We observe that replacing BN with IN deteriorates the performance significantly as
reported in the literature. BN+IN somewhat reduces the gap between BN and IN, but is still far
behind using BN only. On the other hand, BIN achieves higher training and testing accuracy than
BN, as well as allows the network to train faster. The comparison between BIN and BN+IN verifies
that the benefit of BIN does not just come from an ensemble effect of BN and IN. Instead, it comes
from BIN’s ability to learn to balance BN and IN so as to selectively normalize the styles irrelevant
to class labels.

Analysis on gate parameters. To further understand the behavior of BIN, we investigate the
learned values of the style gate parameters in BIN. Figure 2 shows the histogram of ρ in the ResNet-
110 trained on CIFAR-100. It forms a bimodal distribution where most of the parameters are biased
toward 0 or 1, which represents that BIN tends to select either IN or BN rather than somewhere in
between. In addition, the gate values close to 1 (using BN) occupy a much greater fraction than the
values close to 0 (using IN). It conforms to the intuition that BN plays a major role in classification
while IN plays a subsidiary role of reducing unnecessary style variations. Figure 2 also compares the
gate distributions at different layers of the network. Lower layers spend relatively more parameters to
IN (close to 0) than upper layers, because the styles—i.e., global summary—of low-level features
(e.g., brightness, contrast, simple textures) are often irrelevant to the object classes. On the other
hand, upper layers substantially rely on BN because they encode highly abstracted features that are
closely related to object classes, of which the styles are as important as the shapes.
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Table 3: Mixed-domain classification accuracy (%) of ResNet-18 on the Office-Home dataset averaged
over 5-fold cross validation. The network is trained on the entire dataset and tested on each domain
separately.

Art Clipart Product Real-World Avg.

BN 70.04 76.93 88.47 80.38 78.95
BIN 72.23 77.27 89.12 81.68 80.08

Table 4: Domain adaptation accuracy (%) of DANN [4] (based on ResNet-18) on the Office-Home
dataset. X→Y indicates X is the source domain and Y is the target domain.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw

BN 37.23 46.17 63.30 49.38 50.90 60.09
BIN 37.46 46.73 63.19 50.00 52.03 60.55

Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

BN 41.98 37.34 65.71 58.64 44.56 71.17
BIN 43.00 37.69 65.94 59.67 45.02 71.85

Scalability to different architectures. We also evaluate the scalability of BIN by applying it to
a wide range of CNN architectures. We borrow a publicly available implementation2 of classifica-
tion networks and experiment with every model in the repository—AlexNet [16], VGGNet [20]3,
ResNet [7], PreResNet [8], WRN [26], ResNeXt [25], and DenseNet [9]. We construct two variants of
each architecture using BN or BIN, train them on CIFAR-100 exactly following the hyper-parameters
provided in the repository, and compare their testing accuracies. As shown in Table 2, BIN improves
the performance across all tested architectures, which verifies the scalability of BIN with respect to
model variety. It also suggests that BIN brings a distinct benefit that is not simply substituted by
increased model capacity or elaborated network configuration.

4.2 Multi-Domain Learning

Next we apply BIN to multi-domain tasks to validate the advantage of BIN in handling the apparent
style discrepancy between different domains. We employ the Office-Home dataset [23] which is
recently introduced for evaluating domain adaptation with deep learning. It consists of 4 different
domains—Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw)—exhibiting substantial
style variations. Each domain contains images from 65 categories shared across domains and the
entire dataset comprises 15,588 images.

Mixed-domain classification. We first investigate mixed-domain classification where images from
heterogeneous domains are mixed in the training data. We construct a training set by combining
the 4 domains to train a domain-agnostic classification network, and evaluate the model on each
domain separately. As done in the ImageNet classification in Section 4.1, we adopt ResNet-18 as
a base architecture, and follow the same training policy except that the the network is pretrained
on ImageNet and the initial learning rate is set to 0.01. We perform 5-fold cross validation and
report the average accuracy in Table 3. BIN noticeably improves the performance on all of the 4
domains, which demonstrates that BIN effectively alleviates the style disparity between domains. It
is especially effective in the Art domain which contains the fewest number of images (2,427 images),
where exploiting other domains to learn style-invariant features is more valuable.

Domain adaptation. We additionally explore the domain adaptation problem involving a shift
between training (source) and test (target) domains. We randomly split each domain into training and

2https://github.com/bearpaw/pytorch-classification
3Since AlexNet and VGGNet do not contain BN layers, we modify the networks by adding a BN (or BIN)

layer after every convolutional layer.
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Figure 3: Training curves of style transfer networks with different styles and normalization methods.
We compare the content loss (top row) and style loss (bottom row) averaged over 100 iterations..

test sets containing 80% and 20% of the images, respectively. Then we follow the "fully-transductive"
protocol, where the training data from the source and the target domains are incorporated with and
without class labels, respectively, which is also called as unsupervised domain adaptation. We employ
Domain Adversarial Neural Network (DANN) [4] as a base algorithm, which is a recently proposed
domain adaptation framework based on deep adversarial learning. It consists of three components
trained end-to-end: a feature extractor to learn features shared across domains, a label predictor
to classify object labels, and a domain classifier to make the features invariant to the domain shift.
We reimplement the algorithm by constructing the feature extractor based on ResNet-184 where
a 256-dimensional bottleneck is attached after the final average pooling layer. Each of the label
predictor and domain classifier consists of two fully connected layers with a 1024-dimensional hidden
layer (256→ 1024→ 65 and 256→ 1024→ 2). We follow the training hyper-parameters provided
by the author.

The test accuracies on the 12 transfer tasks in the Office-Home dataset are presented in Table 4.
Although not by significant margins, BIN consistently surpasses BN on 11 out of the 12 tasks. In
this scenario BIN identifies and normalizes the styles associated with domain labels as well as not
associated with class labels, allowing the features to be more invariant to domain changes. In addition,
noticing that the target domain is trained without class labels, BIN potentially benefits addressing
problems lacking labeled data by learning more generalizable features from another domain.

4.3 Image Style Transfer

Finally we conduct experiments on style transfer where IN is more appropriate than BN, in order to
confirm that BIN also retains the benefit of IN. We adopt a feed forward style transfer algorithm [14]
which consists of an image transformation network and a loss network for calculating the content
loss and style loss. We train the image transformation network by switching normalization layers,
using content images from the MS-COCO dataset [17] following the same training policy as in [14].

Comparison of normalization methods. Figure 3 compares the training curves with different
normalization methods. As reported in [21, 22, 10], IN brings significant improvement over BN by
discarding style information from content images. A naïve ensemble of BN and IN (BN+IN) produces
a comparable content loss with IN but degenerates the style loss with a considerable margin because
disturbing styles of content images are still remained. In comparison, BIN achieves slightly lower
content loss than IN by preserving important styles—that might be relevant to the contents—from

4DANN originally uses AlexNet, but we replace it by ResNet-18 for natural incorporation of normalization
layers and comparability with above experiments.
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Figure 4: Distributions of the style gate parameters (ρ) of BIN in image style transfer (Rain
Princess). The lower, middle, and upper layers correspond to the first, third, and last residual
blocks, respectively, of the image transformation network [14] containing five residual blocks.

Style Content BN IN BN+IN BIN

Figure 5: Example results of style transfer with different normalization methods. BIN mostly
produces similar results to IN or BN+IN (top), but sometimes generates improved results than the
others by selectively preserving the style of the content image (bottom).

content images. Although it produces marginally higher style loss than IN due to the remaining styles
of content images, the gap is clearly mitigated compared with BN+IN because it selectively discards
impeditive styles only.

Analysis on gate parameters. As done in Section 4.1, we perform analysis on the gate parameters
of BIN. Figure 4 represents the histogram of ρ in the trained image transformation network, which
forms a bimodal distribution as in Figure 2. However, the fraction of gates close to 0 is much higher
(even though they are initialized to 1) compared to Figure 2. This not only ensures that IN is more
suited to a style transfer task than BN, but also demonstrates that BIN exhibits completely different
behavior depending on the task. Furthermore, the distributions at different layers show almost no
difference unlike Figure 2, because the depth of the transformation network (image→image) is less
related with the level of abstraction than the depth of the classification network (image→class label).

Qualitative comparison. Some qualitative examples of style transfer are illustrated in Figure 5.
While BN leads to inferior stylization quality as reported in [21, 22], the other options (IN, BN+IN,
and BIN) produce better results with similar quality in most cases (first row). The distinct behavior
of BIN is observed when the content image contains a meaningful style (second row). BIN tends to
preserve the style of a content image to some degree as well as successfully transfers the target style,
while IN and BN+IN lose the original style almost completely. More results are also provided in the
supplementary material.
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