Gradient Descent for Spiking Neural Networks

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews

Authors

Dongsung Huh, Terrence J. Sejnowski

Abstract

Most large-scale network models use neurons with static nonlinearities that produce analog output, despite the fact that information processing in the brain is predominantly carried out by dynamic neurons that produce discrete pulses called spikes. Research in spike-based computation has been impeded by the lack of efficient supervised learning algorithm for spiking neural networks. Here, we present a gradient descent method for optimizing spiking network models by introducing a differentiable formulation of spiking dynamics and deriving the exact gradient calculation. For demonstration, we trained recurrent spiking networks on two dynamic tasks: one that requires optimizing fast (~ millisecond) spike-based interactions for efficient encoding of information, and a delayed-memory task over extended duration (~ second). The results show that the gradient descent approach indeed optimizes networks dynamics on the time scale of individual spikes as well as on behavioral time scales. In conclusion, our method yields a general purpose supervised learning algorithm for spiking neural networks, which can facilitate further investigations on spike-based computations.