
How to Start Training:

The Effect of Initialization and Architecture

Boris Hanin

Department of Mathematics
Texas A& M University

College Station, TX, USA
bhanin@math.tamu.edu

David Rolnick

Department of Mathematics
Massachusetts Institute of Technology

Cambridge, MA, USA
drolnick@mit.edu

Abstract

We identify and study two common failure modes for early training in deep ReLU
nets. For each, we give a rigorous proof of when it occurs and how to avoid it, for
fully connected, convolutional, and residual architectures. We show that the first
failure mode, exploding or vanishing mean activation length, can be avoided by
initializing weights from a symmetric distribution with variance 2/fan-in and, for
ResNets, by correctly scaling the residual modules. We prove that the second failure
mode, exponentially large variance of activation length, never occurs in residual
nets once the first failure mode is avoided. In contrast, for fully connected nets, we
prove that this failure mode can happen and is avoided by keeping constant the sum
of the reciprocals of layer widths. We demonstrate empirically the effectiveness
of our theoretical results in predicting when networks are able to start training.
In particular, we note that many popular initializations fail our criteria, whereas
correct initialization and architecture allows much deeper networks to be trained.

1 Introduction

Despite the growing number of practical uses for deep learning, training deep neural networks remains
a challenge. Among the many possible obstacles to training, it is natural to distinguish two kinds:
problems that prevent a given neural network from ever achieving better-than-chance performance
and problems that have to do with later stages of training, such as escaping flat regions and saddle
points [12, 27], reaching spurious local minima [5, 15], and overfitting [2, 34]. This paper focuses
specifically on two failure modes related to the first kind of difficulty:

(FM1): The mean length scale in the final layer increases/decreases exponentially with the depth.
(FM2): The empirical variance of length scales across layers grows exponentially with the depth.

Our main contributions and conclusions are:

• The mean and variance of activations in a neural network are both important in de-

termining whether training begins. If both failure modes FM1 and FM2 are avoided, then
a deeper network need not take longer to start training than a shallower network.

• FM1 is dependent on weight initialization. Initializing weights with the correct variance
(in fully connected and convolutional networks) and correctly weighting residual modules
(in residual networks) prevents the mean size of activations from becoming exponentially
large or small as a function of the depth, allowing training to start for deeper architectures.

• For fully connected and convolutional networks, FM2 is dependent on architecture.

Wider layers prevent FM2, again allowing training to start for deeper architectures. In the

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

case of constant-width networks, the width should grow approximately linearly with the
depth to avoid FM2.

• For residual networks, FM2 is largely independent of the architecture. Provided that
residual modules are weighted to avoid FM1, FM2 can never occur. This qualitative
difference between fully connected and residual networks can help to explain the empirical
success of the latter, allowing deep and relatively narrow networks to be trained more readily.

FM1 for fully connected networks has been previously studied [8, 21, 25]. Training may fail to start,
in this failure mode, since the difference between network outputs may exceed machine precision
even for moderate d. For ReLU activations, FM1 has been observed to be overcome by initializations
of He et al. [8]. We prove this fact rigorously (see Theorems 5 and 6). We find empirically that for
poor initializations, training fails more frequently as networks become deeper (see Figures 1 and 4).

Aside from [29], there appears to be less literature studying FM1 for residual networks (ResNets)
[9]. We prove that the key to avoiding FM1 in ResNets is to correctly rescale the contributions of
individual residual modules (see Theorems 5 and 6). Without this, we find empirically that training
fails for deeper ResNets (see Figure 2).

FM2 is more subtle and does not seem to have been widely studied (see [16] for a notable exception).
We find that FM2 indeed impedes early training (see Figure 3). Let us mention two possible explana-
tions. First, if the variance between activations at different layers is very large, then some layers may
have very large or small activations that exceed machine precision. Second, the backpropagated SGD
update for a weight w in a given layer includes a factor that corresponds to the size of activations at
the previous layer. A very small update of w essentially keeps it at its randomly initialized value. A
very large update on the hand essentially re-randomizes w. Thus, we conjecture that FM2 causes the
stochasticity of parameter updates to outweigh the effect of the training loss.

Our analysis of FM2 reveals an interesting difference between fully connected and residual networks.
Namely, for fully connected and convolutional networks, FM2 is a function of architecture, rather
than just of initialization, and can occur even if FM1 does not. For residual networks, we prove by
contrast that FM2 never occurs once FM1 is avoided (see Corollary 2 and Theorem 6).

2 Related Work

Closely related to this article is the work of Taki [29] on initializing ResNets as well as the work
of Yang-Schoenholz [32, 33]. The article [29] gives heuristic computations related to the mean
squared activation in a depth-L ResNet and suggests taking the scales ⌘` of the residual modules to
all be equal to 1/L (see §3.2). The articles [32, 33], in contrast, use mean field theory to derive the
dependence of both forward and backward dynamics in a randomly initialized ResNet on the residual
module weights.

Also related to this work is that of He et al. [8] already mentioned above, as well as [14, 22, 23, 25].
The authors in the latter group show that information can be propagated in infinitely wide ReLU nets
so long as weights are initialized independently according to an appropriately normalized distribution
(see condition (ii) in Definition 1). One notable difference between this collection of papers and the
present work is that we are concerned with a rigorous computation of finite width effects.

These finite size corrections were also studied by Schoenholz et al. [26], which gives exact formulas
for the distribution of pre-activations in the case when the weights and biases are Gaussian. For more
on the Gaussian case, we also point the reader to Giryes et al. [6]. The idea that controlling means and
variances of activations at various hidden layers in a deep network can help with the start of training
was previously considered in Klaumbauer et al. [16]. This work introduced the scaled exponential
linear unit (SELU) activation, which is shown to cause the mean values of neuron activations to
converge to 0 and the average squared length to converge to 1. A different approach to this kind
of self-normalizing behavior was suggested in Wu et al. [31]. There, the authors suggest adding a
linear hidden layer (that has no learnable parameters) but directly normalizes activations to have
mean 0 and variance 1. Activation lengths can also be controlled by constraining weight matrices to
be orthogonal or unitary (see e.g. [1, 10, 13, 18, 24]).

We would also like to point out a previous appearance in Hanin [7] of the sum of reciprocals
of layer widths, which we here show determines the variance of the sizes of the activations (see

2

Theorem 5) in randomly initialized fully connected ReLU nets. The article [7] found that this same
sum of reciprocals is also related to the problem of vanishing and exploding gradients, indicating
commonalities between this failure mode and those we consider here. Finally, we point the reader to
the discussion around Figure 6 in [2], which also finds that time to convergence is better for wider
networks.

3 Results

In this section, we will (1) provide an intuitive motivation and explanation of our mathematical
results, (2) verify empirically that our predictions hold, and (3) show by experiment the implications
for training neural networks.

(a) (b)

Figure 1: Comparison of the behavior of differently initialized fully connected networks as depth
increases. Width is equal to depth throughout. Note that in He normal (truncated), the normal
distribution is truncated at two standard deviations from the mean, as implemented e.g. in Keras and
PyTorch. For 2x He normal, weights are drawn from a normal distribution with twice the variance
of He normal. (a) Mean square length Md (log scale), demonstrating exponential decay or explosion
unless variance is set at 2/fan-in, as in He normal and He uniform initializations; (b) average
number of epochs required to obtain 20% test accuracy when training on vectorized MNIST, showing
that exponential decay or explosion of Md is associated with reduced ability to begin training.

3.1 Avoiding FM1 for Fully Connected Networks: Variance of Weights

Consider a depth-d, fully connected ReLU net N with hidden layer widths nj , j = 0, . . . , d, and
random weights and biases (see Definition 1 for the details of the initialization). As N propagates
an input vector act(0) 2 Rn0 from one layer to the next, the lengths of the resulting vectors of
activations act(j) 2 Rnj change in some manner, eventually producing an output vector whose
length is potentially very different from that of the input. These changes in length are summarized by

Mj :=
1

nj

���act(j)
���
2
,

where here and throughout the squared norm of a vector is the sum of the squares of its entries. We
prove in Theorem 5 that the mean of the normalized output length Md, which controls whether failure
mode FM1 occurs, is determined by the variance of the distribution used to initialize weights. We
emphasize that all our results hold for any fixed input, which need not be random; we average only
over the weights and the biases. Thus, FM1 cannot be directly solved by batch normalization [11],
which renormalizes by averaging over inputs to N , rather than averaging over initializations for N .
Theorem 1 (FM1 for fully connected networks (informal)). The mean E [Md] of the normalized

output length is equal to the input length if network weights are drawn independently from a symmetric

distribution with variance 2/fan-in. For higher variance, the mean E [Md] grows exponentially in

the depth d, while for lower variance, it decays exponentially.

In Figure 1, we compare the effects of different initializations in networks with varying depth, where
the width is equal to the depth (this is done to prevent FM2, see §3.3). Figure 1(a) shows that, as

3

predicted, initializations for which the variance of weights is smaller than the critical value of 2/fan-in
lead to a dramatic decrease in output length, while variance larger than this value causes the output
length to explode. Figure 1(b) compares the ability of differently initialized networks to start training;
it shows the average number of epochs required to achieve 20% test accuracy on MNIST [19]. It is
clear that those initializations which preserve output length are also those which allow for fast initial
training - in fact, we see that it is faster to train a suitably initialized depth-100 network than it is to
train a depth-10 network. Datapoints in (a) represent the statistics over random unit inputs for 1,000
independently initialized networks, while (b) shows the number of epochs required to achieve 20%
accuracy on vectorized MNIST, averaged over 5 training runs with independent initializations, where
networks were trained using stochastic gradient descent with a fixed learning rate of 0.01 and batch
size of 1024, for up to 100 epochs. Note that changing the learning rate depending on depth could be
used to compensate for FM1; choosing the right initialization is equivalent and much simpler.

While E [Md] and its connection to the variance of weights at initialization have been previously noted
(we refer the reader especially to [8] and to §2 for other references), the implications for choosing a
good initialization appear not to have been fully recognized. Many established initializations for ReLU
networks draw weights i.i.d. from a distribution for which the variance is not normalized to preserve
output lengths. As we shall see, such initializations hamper training of very deep networks. For
instance, as implemented in the Keras deep learning Python library [4], the only default initialization to
have the critical variance 2/fan-in is He uniform. By contrast, LeCun uniform and LeCun normal

have variance 1/fan-in, Glorot uniform (also known as Xavier uniform) and Glorot normal

(Xavier normal) have variance 2/(fan-in + fan-out). Finally, the initialization He normal comes
close to having the correct variance, but, at the time of writing, the Keras implementation truncates
the normal distribution at two standard deviations from the mean (the implementation in PyTorch [20]
does likewise). This leads to a decrease in the variance of the resulting weight distribution, causing a
catastrophic decay in the lengths of output activations (see Figure 1). We note this to emphasize both
the sensitivity of initialization and the popularity of initializers that can lead to FM1.

It is worth noting that the 2 in our optimal variance 2/fan-in arises from the ReLU, which zeros
out symmetrically distributed input with probability 1/2, thereby effectively halving the variance at
each layer. (For linear activations, the 2 would disappear.) The initializations described above may
preserve output lengths for activation functions other than ReLU. However, ReLU is one of the most
common activation functions for feed-forward networks and various initializations are commonly used
blindly with ReLUs without recognizing the effect upon ease of training. An interesting systematic
approach to predicting the correct multiplicative constant in the variance of weights as a function of
the non-linearity is proposed in [22, 25] (e.g., the definition of �1 around (7) in Poole et al. [22]). For
non-linearities other than ReLU, however, this constant seems difficult to compute directly.

(a) (b)

Figure 2: Comparison of the behavior of differently scaled ResNets as the number of modules
increases. Each residual module here is a single layer of width 5. (a) Mean length scale Mres

L , which
grows exponentially in the sum of scales ⌘`; (b) average number of epochs to 20% test accuracy when
training on MNIST, showing that Mres

L is a good predictor of initial training performance.

4

3.2 Avoiding FM1 for Residual Networks: Weights of Residual Modules

To state our results about FM1 for ResNets, we must set some notation (based on the framework
presented e.g. in Veit et al. [30]). For a sequence ⌘`, ` = 1, 2 . . . of positive real numbers and a
sequence of fully connected ReLU nets N1,N2, . . ., we define a residual network N res

L with residual

modules N1, . . . ,NL and scales ⌘1, . . . , ⌘L by the recursion

N res
0 (x) = x, N res

` (x) = N res
`�1 (x) + ⌘`N`

�
N res

`�1(x)
�
, ` = 1, . . . , L.

Explicitly,

N res
L (x) = x + ⌘1 N1(x) + ⌘2 N2(x + ⌘1 N1(x)) (1)

+ ⌘3 N3 (x + ⌘1 N1(x) + ⌘2 N2 (x + ⌘1 N1(x))) + · · · .

Intuitively, the scale ⌘` controls the size of the correction to N res
`�1 computed by the residual module

N`. Since we implicitly assume that the depths and widths of the residual modules N` are uniformly
bounded (e.g., the modules may have a common architecture), failure mode FM1 comes down to
determining for which sequences {⌘`} of scales there exist c, C > 0 so that

c sup
L�1

E [Mres
L] C, (2)

where we write M
res
L = kN res

L (x)k2 and x is a unit norm input to N res
L . The expectation in (2) is

over the weights and biases in the fully connected residual modules N`, which we initialize as in
Definition 1, except that we set biases to zero for simplicity (this does not affect the results below). A
part of our main theoretical result, Theorem 6, on residual networks can be summarized as follows.
Theorem 2 (FM1 for ResNets (informal)). Consider a randomly initialized ResNet with L residual

modules, scales ⌘1, . . . , ⌘L, and weights drawn independently from a symmetric distribution with

variance 2/fan-in. The mean E [Mres
L] of the normalized output length grows exponentially with the

sum of the scales
PL

`=1 ⌘`.

We empirically verify the predictive power of the quantity ⌘` in the performance of ResNets. In
Figure 2(a), we initialize ResNets with constant ⌘` = 1 as well as geometrically decaying ⌘` = b

` for
b = 0.9, 0.75, 0.5. All modules are single hidden layers with width 5. We observe that, as predicted
by Theorem 1, ⌘` = 1 leads to exponentially growing length scale M

res
L , while ⌘` = b

` leads the
mean of Mres

L to grow until it reaches a plateau (the value of which depends on b), since
P

⌘` is
finite. In Figure 2(b), we show that the mean of Mres

L well predicts the ease with which ResNets
of different depths are trained. Note the large gap between b = 0.9 and 0.75, which is explained by
noting that the approximation of ⌘2 ⌧ ⌘ which we use in the proof holds for ⌘ ⌧ 1, leading to a
larger constant multiple of

P
⌘` in the exponent for b closer to 1. Each datapoint is averaged over

100 training runs with independent initializations, with training parameters as in Figure 1.

3.3 FM2 for Fully Connected Networks: The Effect of Architecture

In the notation of §3.1, failure mode FM2 is characterized by a large expected value for

dVar[M] :=
1

d

dX

j=1

M
2
j �

0

@1

d

dX

j=1

Mj

1

A
2

,

the empirical variance of the normalized squared lengths of activations among all the hidden layers in
N . Our main theoretical result about FM2 for fully connected networks is the following.

Theorem 3 (FM2 for fully connected networks (informal)). The mean E[dVar[M]] of the empirical

variance for the lengths of activations in a fully connected ReLU net is exponential in
Pd�1

j=1 1/nj ,

the sum of the reciprocals of the widths of the hidden layers.

For a formal statement see Theorem 5. It is well known that deep but narrow networks are hard to
train, and this result provides theoretical justification; since for such nets

P
1/nj is large. More

than that, this sum of reciprocals gives a definite way to quantify the effect of “deep but narrow”
architectures on the volatility of the scale of activations at various layers within the network. We note
that this result also implies that for a given depth and fixed budget of neurons or parameters, constant

5

(a) (b)

Figure 3: Comparison of ease with which different fully connected architectures may be trained.
(a) Mean epochs required to obtain 20% test accuracy when training on MNIST, as a function of
network depth; (b) same y-axis, with x-axis showing the sum of reciprocals of layer widths. Training
efficiency is shown to be predicted closely by this sum of reciprocals, independent of other details of
network architecture. Note that all networks are initialized with He normal weights to avoid FM1.

width is optimal, since by the Power Mean Inequality,
P

j 1/nj is minimized for all nj equal if
P

nj

(number of neurons) or
P

n
2
j (approximate number of parameters) is held fixed.

We experimentally verify that the sum of reciprocals of layer widths (FM2) is an astonishingly good
predictor of the speed of early training. Figure 3(a) compares training performance on MNIST for
fully connected networks of five types:

i. Alternating layers of width 30 and 10,
ii. The first half of the layers of width 30, then the second half of width 10,

iii. The first half of the layers of width 10, then the second half of width 30,
iv. Constant width 15,
v. Constant width 20.

Note that types (i)-(iii) have the same layer widths, but differently permuted. As predicted by our
theory, the order of layer widths does not affect FM2. We emphasize that

1

30
+

1

10
=

1

15
+

1

15
,

type (iv) networks have, for each depth, the same sum of reciprocals of layer widths as types (i)-(iii).
As predicted, early training dynamics for networks of type (i)-(iv) were similar for each fixed depth.
By contrast, networks of type (v), which had a lower sum of reciprocals of layer widths, trained faster
for every depth than the corresponding networks of types (i)-(iv).

In all cases, training becomes harder with greater depth, since
P

1/nj increases with depth for
constant-width networks. In Figure 3(b), we plot the same data with

P
1/nj on the x-axis, showing

this quantity’s power in predicting the effectiveness of early training, irrespective of the particular
details of the network architecture in question.

Each datapoint is averaged over 100 independently initialized training runs, with training parameters
as in Figure 1. All networks are initialized with He normal weights to prevent FM1.

3.4 FM2 for Residual Networks

In the notation of §3.2, failure mode FM2 is equivalent to a large expected value for the empirical
variance

dVar[Mres] :=
1

L

LX

`=1

(Mres
`)2 �

1

L

LX

`=1

M
res
`

!2

of the normalized squared lengths of activations among the residual modules in N . Our main
theoretical result about FM2 for ResNets is the following (see Theorem 5 for the precise statement).

6

Theorem 4 (FM2 for ResNets (informal)). The mean E[dVar[Mres]] of the empirical variance for the

lengths of activations in a residual ReLU net with L residual modules and scales ⌘` is exponential inPL
`=1 ⌘`. By Theorem 2, this means that in ResNets, if failure mode FM1 does not occur, then neither

does FM2 (assuming FM2 does not occur in individual residual modules).

3.5 Convolutional Architectures

Our above results were stated for fully connected networks, but the logic of our proofs carries
over to other architectures. In particular, similar statements hold for convolutional neural networks
(ConvNets). Note that the fan-in for a convolutional layer is not given by the width of the preceding
layer, but instead is equal to the number of features multiplied by the kernel size.

Figure 4: Comparison of the behavior of
differently initialized ConvNets as depth
increases, with the number of features at
each layer proportional to the overall net-
work depth. The mean output length over
different random initializations is observed
to follow the same patterns as in Figure 1
for fully connected networks. Weight dis-
tributions with variance 2/fan-in preserve
output length, while other distributions lead
to exponential growth or decay. The input
image from CIFAR-10 is shown.

In Figure 4, we show that the output length behavior we observed in fully connected networks also
holds in ConvNets. Namely, mean output length equals input length for weights drawn i.i.d. from a
symmetric distribution of variance 2/fan-in, while other variances lead to exploding or vanishing
output lengths as the depth increases. In our experiments, networks were purely convolutional, with
no pooling or fully connected layers. By analogy to Figure 1, the fan-in was set to approximately
the depth of the network by fixing kernel size 3⇥ 3 and setting the number of features at each layer
to one tenth of the network’s total depth. For each datapoint, the network was allowed to vary over
1,000 independent initializations, with input a fixed image from the dataset CIFAR-10 [17].

4 Notation

To state our results formally, we first give the precise definition of the networks we study; and we
introduce some notation. For every d � 1 and n = (ni)

d
i=0 2 Zd+1

+ , we define

N(n, d) =
n

fully connected feed-forward nets with ReLU activations
and depth d, whose jth hidden layer has width nj

o
.

Note that n0 is the dimension of the input. Given N 2 N(n, d), the function fN it computes is
determined by its weights and biases

{w(j)
↵,� , b

(j)
� , 1 ↵ nj , 1 � nj+1, 0 j d� 1}.

For every input act(0) =
⇣
act(0)↵

⌘n0

↵=1
2 Rn0 to N , we write for all j = 1, . . . , d

preact(j)� = b
(j)
� +

nj! 1X

↵=1

act(j�1)
↵ w

(j)
↵,� , act(j)� = ReLU(preact(j)�), 1 � nj . (3)

The vectors preact(j), act(j) are thus the inputs and outputs of nonlinearities in the j
th layer of N .

Definition 1 (Random Nets). Fix d � 1, positive integers n = (n0, . . . , nd) 2 Zd+1
+ , and two

collections of probability measures µ =
�
µ
(1)

, . . . , µ
(d)
�

and ⌫ =
�
⌫
(1)

, . . . , ⌫
(d)
�

on R such that

µ
(j)

, ⌫
(j)

are symmetric around 0 for every 1 j d, and such that the variance of µ
(j)

is 2/(nj�1).

A random network N 2 Nµ,⌫ (n, d) is obtained by requiring that the weights and biases for neurons

at layer j are drawn independently from µ
(j)

, ⌫
(j)

, respectively.

7

