Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)
Arya Mazumdar, Barna Saha
In this paper, we provide a rigorous theoretical study of clustering with noisy queries. Given a set of n elements, our goal is to recover the true clustering by asking minimum number of pairwise queries to an oracle. Oracle can answer queries of the form do elements u and v belong to the same cluster?''-the queries can be asked interactively (adaptive queries), or non-adaptively up-front, but its answer can be erroneous with probability p. In this paper, we provide the first information theoretic lower bound on the number of queries for clustering with noisy oracle in both situations. We design novel algorithms that closely match this query complexity lower bound, even when the number of clusters is unknown. Moreover, we design computationally efficient algorithms both for the adaptive and non-adaptive settings. The problem captures/generalizes multiple application scenarios. It is directly motivated by the growing body of work that use crowdsourcing for {\em entity resolution}, a fundamental and challenging data mining task aimed to identify all records in a database referring to the same entity. Here crowd represents the noisy oracle, and the number of queries directly relates to the cost of crowdsourcing. Another application comes from the problem of sign edge prediction in social network, where social interactions can be both positive and negative, and one must identify the sign of all pair-wise interactions by querying a few pairs. Furthermore, clustering with noisy oracle is intimately connected to correlation clustering, leading to improvement therein. Finally, it introduces a new direction of study in the popular stochastic block model where one has an incomplete stochastic block model matrix to recover the clusters.