NIPS Proceedingsβ

Online control of the false discovery rate with decaying memory

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017)


[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Oral


In the online multiple testing problem, p-values corresponding to different null hypotheses are presented one by one, and the decision of whether to reject a hypothesis must be made immediately, after which the next p-value is presented. Alpha-investing algorithms to control the false discovery rate were first formulated by Foster and Stine and have since been generalized and applied to various settings, varying from quality-preserving databases for science to multiple A/B tests for internet commerce. This paper improves the class of generalized alpha-investing algorithms (GAI) in four ways : (a) we show how to uniformly improve the power of the entire class of GAI procedures under independence by awarding more alpha-wealth for each rejection, giving a near win-win resolution to a dilemma raised by Javanmard and Montanari, (b) we demonstrate how to incorporate prior weights to indicate domain knowledge of which hypotheses are likely to be null or non-null, (c) we allow for differing penalties for false discoveries to indicate that some hypotheses may be more meaningful/important than others, (d) we define a new quantity called the \emph{decaying memory false discovery rate, or $\memfdr$} that may be more meaningful for applications with an explicit time component, using a discount factor to incrementally forget past decisions and alleviate some potential problems that we describe and name ``piggybacking'' and ``alpha-death''. Our GAI++ algorithms incorporate all four generalizations (a, b, c, d) simulatenously, and reduce to more powerful variants of earlier algorithms when the weights and decay are all set to unity.