QMDP-Net: Deep Learning for Planning under Partial Observability

Peter Karkus1,2, David Hsu1,2, Wee Sun Lee2

1NUS Graduate School for Integrative Sciences and Engineering
2School of Computing
National University of Singapore
\{karkus, dyhsu, leews\}@comp.nus.edu.sg

Abstract

This paper introduces the QMDP-net, a neural network architecture for planning under partial observability. The QMDP-net combines the strengths of model-free learning and model-based planning. It is a recurrent policy network, but it represents a policy for a parameterized set of tasks by connecting a model with a planning algorithm that solves the model, thus embedding the solution structure of planning in a network learning architecture. The QMDP-net is fully differentiable and allows for end-to-end training. We train a QMDP-net on different tasks so that it can generalize to new ones in the parameterized task set and “transfer” to other similar tasks beyond the set. In preliminary experiments, QMDP-net showed strong performance on several robotic tasks in simulation. Interestingly, while QMDP-net encodes the QMDP algorithm, it sometimes outperforms the QMDP algorithm in the experiments, as a result of end-to-end learning.

1 Introduction

Decision-making under uncertainty is of fundamental importance, but it is computationally hard, especially under partial observability [24]. In a partially observable world, the agent cannot determine the state exactly based on the current observation; to plan optimal actions, it must integrate information over the past history of actions and observations. See Fig. 1 for an example. In the model-based approach, we may formulate the problem as a partially observable Markov decision process (POMDP). Solving POMDPs exactly is computationally intractable in the worst case [24]. Approximate POMDP algorithms have made dramatic progress on solving large-scale POMDPs [17, 25, 29, 32, 37]; however, manually constructing POMDP models or learning them from data remains difficult. In the model-free approach, we directly search for an optimal solution within a policy class. If we do not restrict the policy class, the difficulty is data and computational efficiency. We may choose a parameterized policy class. The effectiveness of policy search is then constrained by this a priori choice.

Deep neural networks have brought unprecedented success in many domains [16, 21, 30] and provide a distinct new approach to decision-making under uncertainty. The deep Q-network (DQN), which consists of a convolutional neural network (CNN) together with a fully connected layer, has successfully tackled many Atari games with complex visual input [21]. Replacing the post-convolutional fully connected layer of DQN by a recurrent LSTM layer allows it to deal with partial observability [10]. However, compared with planning, this approach fails to exploit the underlying sequential nature of decision-making.

We introduce QMDP-net, a neural network architecture for planning under partial observability. QMDP-net combines the strengths of model-free learning and model-based planning. A QMDP-net is a recurrent policy network, but it represents a policy by connecting a POMDP model with an algorithm that solves the model, thus embedding the solution structure of planning in a network.
Fig. 1: A robot learning to navigate in partially observable grid worlds. (a) The robot has a map. It has a belief over the initial state, but does not know the exact initial state. (b) Local observations are ambiguous and are insufficient to determine the exact state. (c, d) A policy trained on expert demonstrations in a set of randomly generated environments generalizes to a new environment. It also “transfers” to a much larger real-life environment, represented as a LIDAR map [12].

Learning architecture. Specifically, our network uses QMDP [18], a simple, but fast approximate POMDP algorithm, though other more sophisticated POMDP algorithms could be used as well.

A QMDP-net consists of two main network modules (Fig. 2). One represents a Bayesian filter, which integrates the history of an agent’s actions and observations into a belief, i.e., a probabilistic estimate of the agent’s state. The other represents the QMDP algorithm, which chooses the action given the current belief. Both modules are differentiable, allowing the entire network to be trained end-to-end.

We train a QMDP-net on expert demonstrations in a set of randomly generated environments. The trained policy generalizes to new environments and also “transfers” to more complex environments (Fig. 1c–d). Preliminary experiments show that QMDP-net outperformed state-of-the-art network architectures on several robotic tasks in simulation. It successfully solved difficult POMDPs that require reasoning over many time steps, such as the well-known Hallway2 domain [18]. Interestingly, while QMDP-net encodes the QMDP algorithm, it sometimes outperformed the QMDP algorithm in our experiments, as a result of end-to-end learning.

2 Background

2.1 Planning under Uncertainty

A POMDP is formally defined as a tuple \((S, A, O, T, Z, R)\), where \(S\), \(A\) and \(O\) are the state, action, and observation space, respectively. The state-transition function \(T(s, a, s') = P(s' | s, a)\) defines the probability of the agent being in state \(s'\) after taking action \(a\) in state \(s\). The observation function \(Z(s, a, o) = p(o | s, a)\) defines the probability of receiving observation \(o\) after taking action \(a\) in state \(s\). The reward function \(R(s, a)\) defines the immediate reward for taking action \(a\) in state \(s\).

In a partially observable world, the agent does not know its exact state. It maintains a belief, which is a probability distribution over \(S\). The agent starts with an initial belief \(b_0\) and updates the belief \(b_t\) at each time step \(t\) with a Bayesian filter:

\[
b_t(s') = \tau(b_{t-1}, a_t, o_t) = \eta Z(s', a_t, o_t) \sum_{s \in S} T(s, a_t, s') b_{t-1}(s),
\]

where \(\eta\) is a normalizing constant. The belief \(b_t\) recursively integrates information from the entire past history \((a_1, o_1, a_2, o_2, \ldots, a_t, o_t)\) for decision making. POMDP planning seeks a policy \(\pi\) that maximizes the value, i.e., the expected total discounted reward:

\[
V_\pi(b_0) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t R(s_t, a_{t+1}) \mid b_0, \pi\right),
\]

where \(s_t\) is the state at time \(t\), \(a_{t+1} = \pi(b_t)\) is the action that the policy \(\pi\) chooses at time \(t\), and \(\gamma \in (0, 1)\) is a discount factor.

2.2 Related Work

To learn policies for decision making in partially observable domains, one approach is to learn models [6, 19, 26] and solve the models through planning. An alternative is to learn policies directly [2, 5]. Model learning is usually not end-to-end. While policy learning can be end-to-end, it does not exploit model information for effective generalization. Our proposed approach combines model-based and
model-free learning by embedding a model and a planning algorithm in a recurrent neural network (RNN) that represents a policy and then training the network end-to-end.

RNNs have been used earlier for learning in partially observable domains [4, 10, 11]. In particular, Hausknecht and Stone extended DQN [21], a convolutional neural network (CNN), by replacing its post-convolutional fully connected layer with a recurrent LSTM layer [10]. Similarly, Mirowski et al. [20] considered learning to navigate in partially observable 3-D mazes. The learned policy generalizes over different goals, but in a fixed environment. Instead of using the generic LSTM, our approach embeds algorithmic structure specific to sequential decision making in the network architecture and aims to learn a policy that generalizes to new environments.

The idea of embedding specific computation structures in the neural network architecture has been gaining attention recently. Tamar et al. implemented value iteration in a neural network, called Value Iteration Network (VIN), to solve Markov decision processes (MDPs) in fully observable domains, where an agent knows its exact state and does not require filtering [34]. Okada et al. addressed a related problem of path integral optimal control, which allows for continuous states and actions [23]. Neither addresses the issue of partial observability, which drastically increases the computational complexity of decision making [24]. Haarnoja et al. [9] and Jonschkowski and Brock [15] developed end-to-end trainable Bayesian filters for probabilistic state estimation. Silver et al. introduced Predicttron for value estimation in Markov reward processes [31]. They do not deal with decision making or planning. Both Shankar et al. [28] and Gupta et al. [8] addressed planning under partial observability. The former focuses on learning a model rather than a policy. The learned model is trained on a fixed environment and does not generalize to new ones. The latter proposes a network learning approach to robot navigation in an unknown environment, with a focus on mapping. Its network architecture contains a hierarchical extension of VIN for planning and thus does not deal with partial observability during planning. The QMDP-net extends the prior work on network architectures for MDP planning and for Bayesian filtering. It imposes the POMDP model and computation structure priors on the entire network architecture for planning under partial observability.

3 Overview

We want to learn a policy that enables an agent to act effectively in a diverse set of partially observable stochastic environments. Consider, for example, the robot navigation domain in Fig. 1. The environments may correspond to different buildings. The robot agent does not observe its own location directly, but estimates it based on noisy readings from a laser range finder. It has access to building maps, but does not have models of its own dynamics and sensors. While the buildings may differ significantly in their layouts, the underlying reasoning required for effective navigation is similar in all buildings. After training the robot in a few buildings, we want to place the robot in a new building and have it navigate effectively to a specified goal.

Formally, the agent learns a policy for a parameterized set of tasks in partially observable stochastic environments: \(\mathcal{W}_\Theta = \{ W(\theta) \mid \theta \in \Theta \} \), where \(\Theta \) is the set of all parameter values. The parameter value \(\theta \) captures a wide variety of task characteristics that vary within the set, including environments, goals, and agents. In our robot navigation example, \(\theta \) encodes a map of the environment, a goal, and a belief over the robot’s initial state. We assume that all tasks in \(\mathcal{W}_\Theta \) share the same state space, action space, and observation space. The agent does not have prior models of its own dynamics, sensors, or task objectives. After training on tasks for some subset of values in \(\Theta \), the agent learns a policy that solves \(W(\theta) \) for any given \(\theta \in \Theta \).

A key issue is a general representation of a policy for \(\mathcal{W}_\Theta \), without knowing the specifics of \(\mathcal{W}_\Theta \) or its parametrization. We introduce the QMDP-net, a recurrent policy network. A QMDP-net represents a policy by connecting a parameterized POMDP model with an approximate POMDP algorithm and embedding both in a single, differentiable neural network. Embedding the model allows the policy to generalize over \(\mathcal{W}_\Theta \) effectively. Embedding the algorithm allows us to train the entire network end-to-end and learn a model that compensates for the limitations of the approximate algorithm.

Let \(\mathcal{M}(\theta) = (S, A, O, f_T(\cdot|\theta), f_Z(\cdot|\theta), f_R(\cdot|\theta)) \) be the embedded POMDP model, where \(S, A \) and \(O \) are the shared state space, action space, observation space designed manually for all tasks in \(\mathcal{W}_\Theta \) and \(f_T(\cdot|\cdot), f_Z(\cdot|\cdot), f_R(\cdot|\cdot) \) are the state-transition, observation, and reward functions to be learned from data. It may appear that a perfect answer to our learning problem would have
We assume that all tasks in a parameterized set \mathcal{W}_Θ share the same underlying state space S, action space A, and observation space O. We want to learn a QMDP-net policy for \mathcal{W}_Θ, conditioned on the parameters $\theta \in \Theta$. A QMDP-net is a recurrent policy network. The inputs to a QMDP-net are the action $a_t \in A$ and the observation $o_t \in O$ at time step t, as well as the task parameter $\theta \in \Theta$. The output is the action a_{t+1} for time step $t+1$.

A QMDP-net encodes a parameterized POMDP model $M(\theta) = (S, A, O, T = f_T(\cdot|\theta), Z = f_Z(\cdot|\theta), R = f_R(\cdot|\theta))$ and the QMDP algorithm, which selects actions by solving the model approximately. We choose S, A, and O of $M(\theta)$ manually, based on prior knowledge on \mathcal{W}_Θ, specifically, prior knowledge on S, A, and O. In general, $S \neq S$, $A \neq A$, and $O \neq O$. The model states, actions, and observations may be abstractions of their real-world counterparts in the task. In our robot navigation example (Fig. 1), while the robot moves in a continuous space, we choose S to be a grid of finite size. We can do the same for A and O, in order to reduce representational and computational complexity. The transition function T, observation function Z, and reward function R of $M(\theta)$ are conditioned on θ, and are learned from data through end-to-end training. In this work, we assume that T is the same for all tasks in \mathcal{W}_Θ to simplify the network architecture. In other words, T does not depend on θ.

End-to-end training is feasible, because a QMDP-net encodes both a model and the associated algorithm in a single, fully differentiable neural network. The main idea for embedding the algorithm in a neural network is to represent linear operations, such as matrix multiplication and summation, by convolutional layers and represent maximum operations by max-pooling layers. Below we provide some details on the QMDP-net’s architecture, which consists of two modules, a filter and a planner.
We implement the Bayesian filter by transforming Eq. (3) and Eq. (4) to layers of a neural network. Finally, we obtain the updated belief, then weight through directly. Instead, we will use soft indexing again. We encode observations in observation probabilities for the last observation \(Z \).

Navigation task observations depend on the obstacle locations. We condition tensor that represents the probability of receiving observation \(Z \) on \(A \) and \(S \), specifically if \(A = A \). In general, \(A \neq A \), so we cannot use simple indexing. Instead, we will use “soft indexing”.

First we encode actions in \(A \), belief corresponding to the last action taken by the agent, \(b_t(s) \), and \(t \) is a function mapping from \(s, a \) to \(\mathbb{R}^{|A|} \). The output of the convolutional layer, \(b_t(s, a) \), is a \(N \times N \times |A| \) tensor.

\(b_t(s, a) \) encodes the updated belief after taking each of the actions, \(a \in A \). We need to select the belief corresponding to the last action taken by the agent, \(a_t \). We can directly index \(b_t(s, a) \) by \(a_t \) if \(A = A \). In general, \(A \neq A \), so we cannot use simple indexing. Instead, we will use “soft indexing”.

First we encode actions in \(A \) to actions in \(A \) through a learned function \(f_A \). \(f_A \) maps from \(a_t \) to an indexing vector \(w_t^a \), a distribution over actions in \(A \). We then weight \(b_t(s, a) \) by \(w_t^a \) along the appropriate dimension, i.e.

\[
 b_t(s) = \sum_{a \in A} b_t(s, a) w_t^a.
\]

Eq. (4) incorporates observations through an observation model \(Z(s, o) \). Now \(Z(s, o) \) is a \(N \times N \times |O| \) tensor that represents the probability of receiving observation \(o \in O \) in state \(s \in S \). In our grid navigation task observations depend on the obstacle locations. We condition \(Z \) on the task parameter, \(Z(s, o) = f_Z(s, o; \theta) \) for \(\theta \in \Theta \). The function \(f_Z \) is a neural network, mapping from \(\theta \) to \(Z(s, o) \). In this paper, \(f_Z \) is a CNN.

\(Z(s, o) \) encodes observation probabilities for each of the observations, \(o \in O \). We need the observation probabilities for the last observation \(o_t \). In general, \(O \neq O \) and we cannot index \(Z(s, o) \) directly. Instead, we will use soft indexing again. We encode observations in \(O \) to observations in \(O \) through \(f_O \). \(f_O \) is a function mapping from \(o_t \) to an indexing vector, \(w_t^o \), a distribution over \(O \). We then weight \(Z(s, o) \) by \(w_t^o \), i.e.

\[
 Z(s) = \sum_{o \in O} Z(s, o) w_t^o.
\]

Finally, we obtain the updated belief, \(b_{t+1}(s) \), by multiplying \(b_t(s) \) and \(Z(s) \) element-wise, and normalizing over states. In our setting, the initial belief for the task \(W(\theta) \) is encoded in \(\theta \). We initialize the belief in QMDP-net through an additional encoding function, \(b_0 = f_B(\theta) \).

Fig. 3: A QMDP-net consists of two modules. (a) The Bayesian filter module incorporates the current action \(a_t \) and observation \(o_t \) into the belief. (b) The QMDP planner module selects the action according to the current belief \(b_t \).
We compare the QMDP-net with a number of related alternative architectures. Two are QMDP-net variants.

The QMDP planner (Fig. 3b) performs value iteration at its core. Q values are computed by iteratively applying Bellman updates,

$$Q_{k+1}(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_k(s'),$$ \hspace{1cm} (7)

$$V_k(s) = \max_a Q_k(s, a).$$ \hspace{1cm} (8)

Actions are then selected by weighting the Q values with the belief.

We can implement value iteration using convolutional and max pooling layers [28, 34]. In our grid navigation task $Q(s, a)$ is a $N \times N \times |A|$ tensor. Eq. (8) is expressed by a max pooling layer, where $Q_k(s, a)$ is the input and $V_k(s)$ is the output. Eq. (7) is a $N \times N$ convolution with $|A|$ convolutional filters, followed by an addition operation with $R(s, a)$, the reward tensor. We denote the convolutional layer by f'. The kernel weights of f' encode the transition function T, similarly to f_T in the filter. Rewards for a navigation task depend on the goal and obstacles. We condition rewards on the task parameter, $R(s, a) = f_{\theta}(s, a \theta)$. f_{θ} maps from θ to $R(s, a)$. In this paper f_{θ} is a CNN.

We implement K iterations of Bellman updates by stacking the layers representing Eq. (7) and Eq. (8) K times with tied weights. After K iterations we get $Q_K(s, a)$, the approximate Q values for each state-action pair. We weight the Q values by the belief to obtain action values,

$$q(a) = \sum_{s \in S} Q_K(s, a) b_t(s).$$ \hspace{1cm} (9)

Finally, we choose the output action through a low-level policy function, f_{τ}, mapping from $q(a)$ to the action output, a_{t+1}.

QMDP-net naturally extends to higher dimensional discrete state spaces (e.g. our maze navigation task) where n-dimensional convolutions can be used [14]. While $M(\theta)$ is restricted to a discrete space, we can handle continuous tasks W_{θ} by simultaneously learning a discrete $M(\theta)$ for planning, and f_a, f_0, f_b, f_τ to map between states, actions and observations in W_{θ} and $M(\theta)$.

5 Experiments

The main objective of the experiments is to understand the benefits of structure priors on learning neural-network policies. We create several alternative network architectures by gradually relaxing the structure priors and evaluate the architectures on simulated robot navigation and manipulation tasks. While these tasks are simpler than, for example, Atari games, in terms of visual perception, they are in fact very challenging, because of the sophisticated long-term reasoning required to handle partial observability and distant future rewards. Since the exact state of the robot is unknown, a successful policy must reason over many steps to gather information and improve state estimation through partial and noisy observations. It also must reason about the trade-off between the cost of information gathering and the reward in the distance future.

5.1 Experimental Setup

We compare the QMDP-net with a number of related alternative architectures. Two are QMDP-net variants. Untied QMDP-net relaxes the constraints on the planning module by untying the weights representing the state-transition function over the different CNN layers. LSTM QMDP-net replaces the filter module with a generic LSTM module. The other two architectures do not embed POMDP structure priors at all. CNN+LSTM is a state-of-the-art deep CNN connected to an LSTM. It is similar to the DRQN architecture proposed for reinforcement learning under partially observability [10]. RNN is a basic recurrent neural network with a single fully-connected hidden layer. RNN contains no structure specific to planning under partial observability.

Each experimental domain contains a parameterized set of tasks W_{θ}. The parameters θ encode an environment, a goal, and a belief over the robot’s initial state. To train a policy for W_{θ}, we generate random environments, goals, and initial beliefs. We construct ground-truth POMDP models for the generated data and apply the QMDP algorithm. If the QMDP algorithm successfully reaches the goal, we then retain the resulting sequence of action and observations $(a_1, o_1, o_2, o_3, \ldots)$ as an expert trajectory, together with the corresponding environment, goal, and initial belief. It is important to note that the ground-truth POMDPs are used only for generating expert trajectories and not for learning the QMDP-net.
For fair comparison, we train all networks using the same set of expert trajectories in each domain. We perform basic search over training parameters, the number of layers, and the number of hidden units for each network architecture. Below we briefly describe the experimental domains. See Appendix C for implementation details.

Grid-world navigation. A robot navigates in an unknown building given a floor map and a goal. The robot is uncertain of its own location. It is equipped with a LIDAR that detects obstacles in its direct neighborhood. The world is uncertain: the robot may fail to execute desired actions, possibly because of wheel slippage, and the LIDAR may produce false readings. We implemented a simplified version of this task in a discrete \(n \times n\) grid world (Fig. 1c). The task parameter \(\theta\) is represented as an \(n \times n\) image with three channels. The first channel encodes the obstacles in the environment, the second channel encodes the goal, and the last channel encodes the belief over the robot’s initial state. The robot’s state represents its position in the grid. It has four actions: moving in each of the four canonical directions or staying put. The LIDAR observations are compressed into four binary values corresponding to obstacles in the four neighboring cells. We consider both a deterministic and a stochastic variant of the domain. The stochastic variant adds action and observation uncertainties. The robot fails to execute the specified move action and stays in place with probability 0.1 independently in each direction. We trained a policy using expert trajectories from 10,000 random environments, 5 trajectories from each environment. We then tested on a separate set of 500 random environments.

Maze navigation. A differential-drive robot navigates in a maze with the help of a map, but it does not know its pose (Fig. 1d). This domain is similar to the grid-world navigation, but it is significant more challenging. The robot’s state contains both its position and orientation. The robot cannot move freely because of kinematic constraints. It has four actions: move forward, turn left, turn right and stay put. The observations are relative to the robot’s current orientation, and the increased ambiguity makes it more difficult to localize the robot, especially when the initial state is highly uncertain. Finally, successful trajectories in mazes are typically much longer than those in randomly-generated grid worlds. Again we trained on expert trajectories in 10,000 randomly generated mazes and tested them in 500 new ones.

2-D object grasping. A robot gripper picks up novel objects from a table using a two-finger hand with noisy touch sensors at the finger tips. The gripper uses the fingers to perform compliant motions while maintaining contact with the object or to grasp the object. It knows the shape of the object to be grasped, maybe from an object database. However, it does not know its own pose relative to the object and relies on the touch sensors to localize itself. We implemented a simplified 2-D variant of this task, modeled as a POMDP [13]. The task parameter \(\theta\) is an image with three channels encoding the object shape, the grasp point, and a belief over the gripper’s initial pose. The gripper has four actions, each moving in a canonical direction unless it touches the object or the environment boundary. Each finger has 3 binary touch sensors at the tip, resulting in 64 distinct observations. We trained on expert demonstration on 20 different objects with 500 randomly sampled poses for each object. We then tested on 10 previously unseen objects in random poses.

5.2 Choosing QMDP-Net Components for a Task

Given a new task \(\mathcal{W}_\phi\), we need to choose an appropriate neural network representation for \(M(\theta)\). More specifically, we need to choose \(S, A\) and \(O\), and a representation for the functions \(f_R, f_T, f_I, f_Z, f_O, f_{\theta}, f_B, f_x\). This provides an opportunity to incorporate domain knowledge in a principled way. For example, if \(\mathcal{W}_\phi\) has a local and spatially invariant connectivity structure, we can choose convolutions with small kernels to represent \(f_T, f_R\) and \(f_Z\).
We used...
would be to learn a policy in small environments and transfer it to large environments by repeating
the reasoning process. To transfer a learned QMDP-net policy, we simply expand its planning module
by adding more recurrent layers. Specifically, we trained a policy in randomly generated 30×30
grid worlds with $K = 90$. We then set $K = 450$ and applied the learned policy to several real-life
environments, including Intel Lab (100×101) and Freiburg (139×57), using their LIDAR maps
(Fig. 1c) from the Robotics Data Set Repository [12]. See the results for these two environments in
Table 1. Additional results with different K settings and other buildings are available in Appendix A.

6 Conclusion

A QMDP-net is a deep recurrent policy network that embeds POMDP structure priors for planning
under partial observability. While generic neural networks learn a direct mapping from inputs to
outputs, QMDP-net learns how to model and solve a planning task. The network is fully differentiable
and allows for end-to-end training.

Experiments on several simulated robotic tasks show that learned QMDP-net policies successfully
generalize to new environments and transfer to larger environments as well. The POMDP structure
priors and end-to-end training substantially improve the performance of learned policies. Interestingly,
while a QMDP-net encodes the QMDP algorithm for planning, learned QMDP-net policies sometimes
outperform QMDP.

There are many exciting directions for future exploration. First, a major limitation of our current
approach is the state space representation. The value iteration algorithm used in QMDP iterates
through the entire state space and is well known to suffer from the “curse of dimensionality”. To
alleviate this difficulty, the QMDP-net, through end-to-end training, may learn a much smaller
abstract state space representation for planning. One may also incorporate hierarchical planning [8].
Second, QMDP makes strong approximations in order to reduce computational complexity. We
want to explore the possibility of embedding more sophisticated POMDP algorithms in the network
architecture. While these algorithms provide stronger planning performance, their algorithmic
sophistication increases the difficulty of learning. Finally, we have so far restricted the work to
imitation learning. It would be exciting to extend it to reinforcement learning. Based on earlier
work [28, 34], this is indeed promising.

Acknowledgments We thank Leslie Kaelbling and Tomás Lozano-Pérez for insightful discussions that
helped to improve our understanding of the problem. The work is supported in part by Singapore Ministry of
Education AcRF grant MOE2016-T2-2-068 and National University of Singapore AcRF grant R-252-000-587-
112.

Table 1: Performance comparison of QMDP-net and alternative architectures for recurrent policy
networks. SR is the success rate in percentage. Time is the average number of time steps for task
completion. D-n and S-n denote deterministic and stochastic variants of a domain with environment
size $n \times n$.

<table>
<thead>
<tr>
<th>Domain</th>
<th>QMDP</th>
<th>QMDP-net</th>
<th>Untied LSTM</th>
<th>CNN LSTM</th>
<th>RNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid D-10</td>
<td>99.8</td>
<td>8.8</td>
<td>99.6</td>
<td>8.2</td>
<td>98.6</td>
</tr>
<tr>
<td>Grid D-18</td>
<td>99.0</td>
<td>15.5</td>
<td>99.0</td>
<td>14.6</td>
<td>98.8</td>
</tr>
<tr>
<td>Grid D-30</td>
<td>97.6</td>
<td>24.6</td>
<td>98.6</td>
<td>25.0</td>
<td>98.8</td>
</tr>
<tr>
<td>Grid S-18</td>
<td>98.1</td>
<td>23.9</td>
<td>98.8</td>
<td>23.9</td>
<td>95.9</td>
</tr>
<tr>
<td>Maze D-29</td>
<td>63.2</td>
<td>54.1</td>
<td>98.0</td>
<td>56.5</td>
<td>95.4</td>
</tr>
<tr>
<td>Maze S-19</td>
<td>63.1</td>
<td>50.5</td>
<td>93.9</td>
<td>60.4</td>
<td>98.7</td>
</tr>
<tr>
<td>Hallway2</td>
<td>37.3</td>
<td>28.2</td>
<td>82.9</td>
<td>64.4</td>
<td>60.6</td>
</tr>
<tr>
<td>Grasp</td>
<td>98.3</td>
<td>14.6</td>
<td>99.6</td>
<td>18.2</td>
<td>98.9</td>
</tr>
<tr>
<td>Intel Lab</td>
<td>90.2</td>
<td>85.4</td>
<td>94.4</td>
<td>107.7</td>
<td>20.0</td>
</tr>
<tr>
<td>Freiburg</td>
<td>88.4</td>
<td>66.9</td>
<td>93.2</td>
<td>81.1</td>
<td>37.4</td>
</tr>
<tr>
<td>Fixed grid</td>
<td>98.8</td>
<td>17.4</td>
<td>98.6</td>
<td>17.6</td>
<td>99.8</td>
</tr>
</tbody>
</table>
References

