
Deep Reinforcement Learning
from Human Preferences

Paul F Christiano
OpenAI

paul@openai.com

Jan Leike
DeepMind

leike@google.com

Tom B Brown
Google Brain⇤

tombbrown@google.com

Miljan Martic
DeepMind

miljanm@google.com

Shane Legg
DeepMind

legg@google.com

Dario Amodei
OpenAI

damodei@openai.com

Abstract

For sophisticated reinforcement learning (RL) systems to interact usefully with
real-world environments, we need to communicate complex goals to these systems.
In this work, we explore goals defined in terms of (non-expert) human preferences
between pairs of trajectory segments. We show that this approach can effectively
solve complex RL tasks without access to the reward function, including Atari
games and simulated robot locomotion, while providing feedback on less than
1% of our agent’s interactions with the environment. This reduces the cost of
human oversight far enough that it can be practically applied to state-of-the-art
RL systems. To demonstrate the flexibility of our approach, we show that we can
successfully train complex novel behaviors with about an hour of human time.
These behaviors and environments are considerably more complex than any which
have been previously learned from human feedback.

1 Introduction

Recent success in scaling reinforcement learning (RL) to large problems has been driven in domains
that have a well-specified reward function (Mnih et al., 2015, 2016; Silver et al., 2016). Unfortunately,
many tasks involve goals that are complex, poorly-defined, or hard to specify. Overcoming this
limitation would greatly expand the possible impact of deep RL and could increase the reach of
machine learning more broadly.

For example, suppose that we wanted to use reinforcement learning to train a robot to clean a table or
scramble an egg. It’s not clear how to construct a suitable reward function, which will need to be a
function of the robot’s sensors. We could try to design a simple reward function that approximately
captures the intended behavior, but this will often result in behavior that optimizes our reward
function without actually satisfying our preferences. This difficulty underlies recent concerns about
misalignment between our values and the objectives of our RL systems (Bostrom, 2014; Russell,
2016; Amodei et al., 2016). If we could successfully communicate our actual objectives to our agents,
it would be a significant step towards addressing these concerns.

If we have demonstrations of the desired task, we can use inverse reinforcement learning (Ng and
Russell, 2000) or imitation learning to copy the demonstrated behavior. But these approaches are not
directly applicable to behaviors that are difficult for humans to demonstrate (such as controlling a
robot with many degrees of freedom but non-human morphology).

⇤Work done while at OpenAI.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



An alternative approach is to allow a human to provide feedback on our system’s current behavior
and to use this feedback to define the task. In principle this fits within the paradigm of reinforcement
learning, but using human feedback directly as a reward function is prohibitively expensive for RL
systems that require hundreds or thousands of hours of experience. In order to practically train deep
RL systems with human feedback, we need to decrease the amount of feedback required by several
orders of magnitude.

We overcome this difficulty by asking humans to compare possible trajectories of the agent, using
that data to learn a reward function, and optimizing the learned reward function with RL.

This basic approach has been explored in the past, but we confront the challenges involved in scaling
it up to modern deep RL and demonstrate by far the most complex behaviors yet learned from human
feedback.

Our experiments take place in two domains: Atari games in the Arcade Learning Environment (Belle-
mare et al., 2013), and robotics tasks in the physics simulator MuJoCo (Todorov et al., 2012). We
show that a small amount of feedback from a non-expert human, ranging from fifteen minutes to five
hours, suffice to learn both standard RL tasks and novel hard-to-specify behaviors such as performing
a backflip or driving with the flow of traffic.

1.1 Related Work

A long line of work studies reinforcement learning from human ratings or rankings, including Akrour
et al. (2011), Pilarski et al. (2011), Akrour et al. (2012), Wilson et al. (2012), Sugiyama et al. (2012),
Wirth and Fürnkranz (2013), Daniel et al. (2015), El Asri et al. (2016), Wang et al. (2016), and
Wirth et al. (2016). Other lines of research consider the general problem of reinforcement learning
from preferences rather than absolute reward values (Fürnkranz et al., 2012; Akrour et al., 2014;
Wirth et al., 2016), and optimizing using human preferences in settings other than reinforcement
learning (Machwe and Parmee, 2006; Secretan et al., 2008; Brochu et al., 2010; Sørensen et al.,
2016).

Our algorithm follows the same basic approach as Akrour et al. (2012) and Akrour et al. (2014), but
considers much more complex domains and behaviors. The complexity of our environments force us
to use different RL algorithms, reward models, and training strategies. One notable difference is that
Akrour et al. (2012) and Akrour et al. (2014) elicit preferences over whole trajectories rather than
short clips, and so would require about an order of magnitude more human time per data point. Our
approach to feedback elicitation closely follows Wilson et al. (2012). However, Wilson et al. (2012)
assumes that the reward function is the distance to some unknown (linear) “target” policy, and is
never tested with real human feedback.

TAMER (Knox, 2012; Knox and Stone, 2013) also learns a reward function from human feedback,
but learns from ratings rather than comparisons, has the human observe the agent as it behaves,
and has been applied to settings where the desired policy can be learned orders of magnitude more
quickly.

Compared to all prior work, our key contribution is to scale human feedback up to deep reinforcement
learning and to learn much more complex behaviors. This fits into a recent trend of scaling reward
learning methods to large deep learning systems, for example inverse RL (Finn et al., 2016), imitation
learning (Ho and Ermon, 2016; Stadie et al., 2017), semi-supervised skill generalization (Finn et al.,
2017), and bootstrapping RL from demonstrations (Silver et al., 2016; Hester et al., 2017).

2 Preliminaries and Method

2.1 Setting and Goal

We consider an agent interacting with an environment over a sequence of steps; at each time t the
agent receives an observation ot 2 O from the environment and then sends an action at 2 A to the
environment.

In traditional reinforcement learning, the environment would also supply a reward rt 2 R and the
agent’s goal would be to maximize the discounted sum of rewards. Instead of assuming that the
environment produces a reward signal, we assume that there is a human overseer who can express

2



preferences between trajectory segments. A trajectory segment is a sequence of observations and
actions, � = ((o0, a0), (o1, a1), . . . , (ok�1, ak�1)) 2 (O ⇥A)

k. Write �

1 � �

2 to indicate that the
human preferred trajectory segment �1 to trajectory segment �2. Informally, the goal of the agent is
to produce trajectories which are preferred by the human, while making as few queries as possible to
the human.

More precisely, we will evaluate our algorithms’ behavior in two ways:

Quantitative: We say that preferences � are generated by a reward function2
r : O ⇥A ! R if

��
o

1
0, a

1
0

�
, . . . ,

�
o

1
k�1, a

1
k�1

�� � ��
o

2
0, a

2
0

�
, . . . ,

�
o

2
k�1, a

2
k�1

��

whenever

r

�
o

1
0, a

1
0

�
+ · · ·+ r

�
o

1
k�1, a

1
k�1

�
> r

�
o

2
0, a

2
0

�
+ · · ·+ r

�
o

2
k�1, a

2
k�1

�
.

If the human’s preferences are generated by a reward function r, then our agent ought to
receive a high total reward according to r. So if we know the reward function r, we can
evaluate the agent quantitatively. Ideally the agent will achieve reward nearly as high as if it
had been using RL to optimize r.

Qualitative: Sometimes we have no reward function by which we can quantitatively evaluate
behavior (this is the situation where our approach would be practically useful). In these
cases, all we can do is qualitatively evaluate how well the agent satisfies the human’s
preferences. In this paper, we will start from a goal expressed in natural language, ask a
human to evaluate the agent’s behavior based on how well it fulfills that goal, and then
present videos of agents attempting to fulfill that goal.

Our model based on trajectory segment comparisons is very similar to the trajectory preference
queries used in Wilson et al. (2012), except that we don’t assume that we can reset the system to
an arbitrary state3 and so our segments generally begin from different states. This complicates the
interpretation of human comparisons, but we show that our algorithm overcomes this difficulty even
when the human raters have no understanding of our algorithm.

2.2 Our Method

At each point in time our method maintains a policy ⇡ : O ! A and a reward function estimate
r̂ : O ⇥A ! R, each parametrized by deep neural networks.

These networks are updated by three processes:

1. The policy ⇡ interacts with the environment to produce a set of trajectories {⌧1, . . . , ⌧ i}.
The parameters of ⇡ are updated by a traditional reinforcement learning algorithm, in order
to maximize the sum of the predicted rewards rt = r̂(ot, at).

2. We select pairs of segments
�
�

1
,�

2
�

from the trajectories {⌧1, . . . , ⌧ i} produced in step 1,
and send them to a human for comparison.

3. The parameters of the mapping r̂ are optimized via supervised learning to fit the comparisons
collected from the human so far.

These processes run asynchronously, with trajectories flowing from process (1) to process (2), human
comparisons flowing from process (2) to process (3), and parameters for r̂ flowing from process (3)
to process (1). The following subsections provide details on each of these processes.

2Here we assume here that the reward is a function of the observation and action. In our experiments in
Atari environments, we instead assume the reward is a function of the preceding 4 observations. In a general
partially observable environment, we could instead consider reward functions that depend on the whole sequence
of observations, and model this reward function with a recurrent neural network.

3Wilson et al. (2012) also assumes the ability to sample reasonable initial states. But we work with high
dimensional state spaces for which random states will not be reachable and the intended policy inhabits a
low-dimensional manifold.

3



2.2.1 Optimizing the Policy

After using r̂ to compute rewards, we are left with a traditional reinforcement learning problem. We
can solve this problem using any RL algorithm that is appropriate for the domain. One subtlety is
that the reward function r̂ may be non-stationary, which leads us to prefer methods which are robust
to changes in the reward function. This led us to focus on policy gradient methods, which have been
applied successfully for such problems (Ho and Ermon, 2016).

In this paper, we use advantage actor-critic (A2C; Mnih et al., 2016) to play Atari games, and trust
region policy optimization (TRPO; Schulman et al., 2015) to perform simulated robotics tasks. In
each case, we used parameter settings which have been found to work well for traditional RL tasks.
The only hyperparameter which we adjusted was the entropy bonus for TRPO. This is because TRPO
relies on the trust region to ensure adequate exploration, which can lead to inadequate exploration if
the reward function is changing.

We normalized the rewards produced by r̂ to have zero mean and constant standard deviation. This is
a typical preprocessing step which is particularly appropriate here since the position of the rewards is
underdetermined by our learning problem.

2.2.2 Preference Elicitation

The human overseer is given a visualization of two trajectory segments, in the form of short movie
clips. In all of our experiments, these clips are between 1 and 2 seconds long.

The human then indicates which segment they prefer, that the two segments are equally good, or that
they are unable to compare the two segments.

The human judgments are recorded in a database D of triples
�
�

1
,�

2
, µ

�
, where �

1 and �

2 are the
two segments and µ is a distribution over {1, 2} indicating which segment the user preferred. If the
human selects one segment as preferable, then µ puts all of its mass on that choice. If the human
marks the segments as equally preferable, then µ is uniform. Finally, if the human marks the segments
as incomparable, then the comparison is not included in the database.

2.2.3 Fitting the Reward Function

We can interpret a reward function estimate r̂ as a preference-predictor if we view r̂ as a latent factor
explaining the human’s judgments and assume that the human’s probability of preferring a segment
�

i depends exponentially on the value of the latent reward summed over the length of the clip:4

ˆ

P

⇥
�

1 � �

2
⇤
=

exp

P
r̂

�
o

1
t , a

1
t

�

exp

P
r̂(o

1
t , a

1
t ) + exp

P
r̂(o

2
t , a

2
t )
. (1)

We choose r̂ to minimize the cross-entropy loss between these predictions and the actual human
labels:

loss(r̂) = �
X

(�1,�2,µ)2D

µ(1) log

ˆ

P

⇥
�

1 � �

2
⇤
+ µ(2) log

ˆ

P

⇥
�

2 � �

1
⇤
.

This follows the Bradley-Terry model (Bradley and Terry, 1952) for estimating score functions from
pairwise preferences, and is the specialization of the Luce-Shephard choice rule (Luce, 2005; Shepard,
1957) to preferences over trajectory segments.

Our actual algorithm incorporates a number of modifications to this basic approach, which early
experiments discovered to be helpful and which are analyzed in Section 3.3:

• We fit an ensemble of predictors, each trained on |D| triples sampled from D with replace-
ment. The estimate r̂ is defined by independently normalizing each of these predictors and
then averaging the results.

• A fraction of 1/e of the data is held out to be used as a validation set for each predictor.
We use `2 regularization and adjust the regularization coefficient to keep the validation loss
between 1.1 and 1.5 times the training loss. In some domains we also apply dropout for
regularization.

4Equation 1 does not use discounting, which could be interpreted as modeling the human to be indifferent
about when things happen in the trajectory segment. Using explicit discounting or inferring the human’s discount
function would also be reasonable choices.

4



• Rather than applying a softmax directly as described in Equation 1, we assume there is a
10% chance that the human responds uniformly at random. Conceptually this adjustment is
needed because human raters have a constant probability of making an error, which doesn’t
decay to 0 as the difference in reward difference becomes extreme.

2.2.4 Selecting Queries

We decide how to query preferences based on an approximation to the uncertainty in the reward
function estimator, similar to Daniel et al. (2014): we sample a large number of pairs of trajectory
segments of length k from the latest agent-environment interactions, use each reward predictor
in our ensemble to predict which segment will be preferred from each pair, and then select those
trajectories for which the predictions have the highest variance across ensemble members5 This is a
crude approximation and the ablation experiments in Section 3 show that in some tasks it actually
impairs performance. Ideally, we would want to query based on the expected value of information of
the query (Akrour et al., 2012; Krueger et al., 2016), but we leave it to future work to explore this
direction further.

3 Experimental Results

We implemented our algorithm in TensorFlow (Abadi et al., 2016). We interface with Mu-
JoCo (Todorov et al., 2012) and the Arcade Learning Environment (Bellemare et al., 2013) through
the OpenAI Gym (Brockman et al., 2016).

3.1 Reinforcement Learning Tasks with Unobserved Rewards

In our first set of experiments, we attempt to solve a range of benchmark tasks for deep RL without
observing the true reward. Instead, the agent learns about the goal of the task only by asking a human
which of two trajectory segments is better. Our goal is to solve the task in a reasonable amount of
time using as few queries as possible.

In our experiments, feedback is provided by contractors who are given a 1-2 sentence description
of each task before being asked to compare several hundred to several thousand pairs of trajectory
segments for that task (see Appendix B for the exact instructions given to contractors). Each trajectory
segment is between 1 and 2 seconds long. Contractors responded to the average query in 3-5 seconds,
and so the experiments involving real human feedback required between 30 minutes and 5 hours of
human time.

For comparison, we also run experiments using a synthetic oracle whose preferences are generated
(in the sense of Section 2.1) by the real reward6. We also compare to the baseline of RL training
using the real reward. Our aim here is not to outperform but rather to do nearly as well as RL without
access to reward information and instead relying on much scarcer feedback. Nevertheless, note that
feedback from real humans does have the potential to outperform RL (and as shown below it actually
does so on some tasks), because the human feedback might provide a better-shaped reward.

We describe the details of our experiments in Appendix A, including model architectures, modifica-
tions to the environment, and the RL algorithms used to optimize the policy.

3.1.1 Simulated Robotics

The first tasks we consider are eight simulated robotics tasks, implemented in MuJoCo (Todorov
et al., 2012), and included in OpenAI Gym (Brockman et al., 2016). We made small modifications
to these tasks in order to avoid encoding information about the task in the environment itself (the
modifications are described in detail in Appendix A). The reward functions in these tasks are quadratic
functions of distances, positions and velocities, and most are linear. We included a simple cartpole

5Note that trajectory segments almost never start from the same state.
6In the case of Atari games with sparse rewards, it is relatively common for two clips to both have zero

reward in which case the oracle outputs indifference. Because we considered clips rather than individual states,
such ties never made up a large majority of our data. Moreover, ties still provide significant information to the
reward predictor as long as they are not too common.

5



Figure 1: Results on MuJoCo simulated robotics as measured on the tasks’ true reward. We compare
our method using real human feedback (purple), our method using synthetic feedback provided by
an oracle (shades of blue), and reinforcement learning using the true reward function (orange). All
curves are the average of 5 runs, except for the real human feedback, which is a single run, and
each point is the average reward over five consecutive batches. For Reacher and Cheetah feedback
was provided by an author due to time constraints. For all other tasks, feedback was provided by
contractors unfamiliar with the environments and with our algorithm. The irregular progress on
Hopper is due to one contractor deviating from the typical labeling schedule.

task (“pendulum”) for comparison, since this is representative of the complexity of tasks studied in
prior work.

Figure 1 shows the results of training our agent with 700 queries to a human rater, compared to
learning from 350, 700, or 1400 synthetic queries, as well as to RL learning from the real reward.
With 700 labels we are able to nearly match reinforcement learning on all of these tasks. Training
with learned reward functions tends to be less stable and higher variance, while having a comparable
mean performance.

Surprisingly, by 1400 labels our algorithm performs slightly better than if it had simply been given
the true reward, perhaps because the learned reward function is slightly better shaped—the reward
learning procedure assigns positive rewards to all behaviors that are typically followed by high reward.
The difference may also be due to subtle changes in the relative scale of rewards or our use of entropy
regularization.

Real human feedback is typically only slightly less effective than the synthetic feedback; depending
on the task human feedback ranged from being half as efficient as ground truth feedback to being
equally efficient. On the Ant task the human feedback significantly outperformed the synthetic
feedback, apparently because we asked humans to prefer trajectories where the robot was “standing
upright,” which proved to be useful reward shaping. (There was a similar bonus in the RL reward
function to encourage the robot to remain upright, but the simple hand-crafted bonus was not as
useful.)

3.1.2 Atari

The second set of tasks we consider is a set of seven Atari games in the Arcade Learning Environ-
ment (Bellemare et al., 2013), the same games presented in Mnih et al., 2013.

Figure 2 shows the results of training our agent with 5,500 queries to a human rater, compared to
learning from 350, 700, or 1400 synthetic queries, as well as to RL learning from the real reward.
Our method has more difficulty matching RL in these challenging environments, but nevertheless it
displays substantial learning on most of them and matches or even exceeds RL on some. Specifically,

6








