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Abstract

Recent works have shown that exploiting multi-scale representations deeply learned
via convolutional neural networks (CNN) is of tremendous importance for accurate
contour detection. This paper presents a novel approach for predicting contours
which advances the state of the art in two fundamental aspects, i.e. multi-scale
feature generation and fusion. Different from previous works directly consider-
ing multi-scale feature maps obtained from the inner layers of a primary CNN
architecture, we introduce a hierarchical deep model which produces more rich
and complementary representations. Furthermore, to refine and robustly fuse the
representations learned at different scales, the novel Attention-Gated Conditional
Random Fields (AG-CRFs) are proposed. The experiments ran on two publicly
available datasets (BSDS500 and NYUDv2) demonstrate the effectiveness of the
latent AG-CRF model and of the overall hierarchical framework.

1 Introduction

Considered as one of the fundamental tasks in low-level vision, contour detection has been deeply
studied in the past decades. While early works mostly focused on low-level cues (e.g. colors, gradients,
textures) and hand-crafted features [3, 25, 22], more recent methods benefit from the representational
power of deep learning models [31, 2, 38, 19, 24]. The ability to effectively exploit multi-scale
feature representations is considered a crucial factor for achieving accurate predictions of contours
in both traditional [29] and CNN-based [38, 19, 24] approaches. Restricting the attention on deep
learning-based solutions, existing methods [38, 24] typically derive multi-scale representations by
adopting standard CNN architectures and considering directly the feature maps associated to different
inner layers. These maps are highly complementary: while the features from the first layers are
responsible for predicting fine details, the ones from the higher layers are devoted to encode the
basic structure of the objects. Traditionally, concatenation and weighted averaging are very popular
strategies to combine multi-scale representations (see Fig. 1.a). While these strategies typically lead
to an increased detection accuracy with respect to single-scale models, they severly simplify the
complex relationship between multi-scale feature maps.

The motivational cornerstone of this study is the following research question: is it worth modeling
and exploiting complex relationships between multiple scales of a deep representation for contour
detection? In order to provide an answer and inspired by recent works exploiting graphical models
within deep learning architectures [5, 39], we introduce Attention-Gated Conditional Random Fields
(AG-CRFs), which allow to learn robust feature map representations at each scale by exploiting the in-
formation available from other scales. This is achieved by incorporating an attention mechanism [27]
seamlessly integrated into the multi-scale learning process under the form of gates [26]. Intuitively,
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the attention mechanism will further enhance the quality of the learned multi-scale representation,
thus improving the overall performance of the model.

We integrated the proposed AG-CRFs into a two-level hierarchical CNN model, defining a novel
Attention-guided Multi-scale Hierarchical deepNet (AMH-Net) for contour detection. The hierarchi-
cal network is able to learn richer multi-scale features than conventional CNNs, the representational
power of which is further enhanced by the proposed AG-CRF model. We evaluate the effectiveness
of the overall model on two publicly available datasets for the contour detection task, i.e. BSDS500
[1] and NYU Depth v2 [33]. The results demonstrate that our approach is able to learn rich and
complementary features, thus outperforming state-of-the-art contour detection methods.

Related work. In the last few years several deep learning models have been proposed for detecting
contours [31, 2, 41, 38, 24, 23]. Among these, some works explicitly focused on devising multi-scale
CNN models in order to boost performance. For instance, the Holistically-Nested Edge Detection
method [38] employed multiple side outputs derived from the inner layers of a primary CNN and
combine them for the final prediction. Liu et al. [23] introduced a framework to learn rich deep
representations by concatenating features derived from all convolutional layers of VGG16. Bertasius
et al. [2] considered skip-layer CNNs to jointly combine feature maps from multiple layers. Maninis
et al. [24] proposed Convolutional Oriented Boundaries (COB), where features from different layers
are fused to compute oriented contours and region hierarchies. However, these works combine the
multi-scale representations from different layers adopting concatenation and weighted averaging
schemes while not considering the dependency between the features. Furthermore, these works do
not focus on generating more rich and diverse representations at each CNN layer.

The combination of multi-scale representations has been also widely investigated for other pixel-level
prediction tasks, such as semantic segmentation [43], visual saliency detection [21] and monocular
depth estimation [39], and different deep architectures have been designed. For instance, to effectively
aggregate the multi-scale information, Yu et al. [43] introduced dilated convolutions. Yang et al. [42]
proposed DAG-CNNs where multi-scale feature outputs from different ReLU layers are combined
through element-wise addition operator. However, none of these works incorporate an attention
mechanism into a multi-scale structured feature learning framework.

Attention models have been successfully exploited in deep learning for various tasks such as image
classification [37], speech recognition [4] and image caption generation [40]. However, to our
knowledge, this work is the first to introduce an attention model for estimating contours. Furthermore,
we are not aware of previous studies integrating the attention mechanism into a probabilistic (CRF)
framework to control the message passing between hidden variables. We model the attention as
gates [26], which have been used in previous deep models such as restricted Boltzman machine
for unsupervised feature learning [35], LSTM for sequence learning [12, 6] and CNN for image
classification [44]. However, none of these works explore the possibility of jointly learning multi-scale
deep representations and an attention model within a unified probabilistic graphical model.

2 Attention-Gated CRFs for Deep Structured Multi-Scale Feature Learning

2.1 Problem Definition and Notation

Given an input image I and a generic front-end CNN model with parameters Wc, we consider a set
of S multi-scale feature maps F = {fs}Ss=1. Being a generic framework, these feature maps can
be the output of S intermediate CNN layers or of another representation, thus s is a virtual scale.
The feature map at scale s, fs can be interpreted as a set of feature vectors, fs = {f is}Ni=1, where
N is the number of pixels. Opposite to previous works adopting simple concatenation or weighted
averaging schemes [16, 38], we propose to combine the multi-scale feature maps by learning a set
of latent feature maps hs = {hi

s}Ni=1 with a novel Attention-Gated CRF model sketched in Fig.1.
Intuitively, this allows a joint refinement of the features by flowing information between different
scales. Moreover, since the information from one scale may or may not be relevant for the pixels at
another scale, we utilise the concept of gate, previously introduced in the literature in the case of
graphical models [36], in our CRF formulation. These gates are binary random hidden variables that
permit or block the flow of information between scales at every pixel. Formally, gise,sr ∈ {0, 1} is the
gate at pixel i of scale sr (receiver) from scale se (emitter), and we also write gse,sr = {gise,sr}Ni=1.
Precisely, when gise,sr = 1 then the hidden variable hi

sr is updated taking (also) into account the
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Figure 1: An illustration of different schemes for multi-scale deep feature learning and fusion. (a)
the traditional approach (e.g. concatenation, weighted average), (b) CRF implementing multi-scale
feature fusion (c) the proposed AG-CRF-based approach.

information from the se-th layer, i.e. hse . As shown in the following, the joint inference of the hidden
features and the gates leads to estimating the optimal features as well as the corresponding attention
model, hence the name Attention-Gated CRFs.

2.2 Attention-Gated CRFs

Given the observed multi-scale feature maps F of image I, the objective is to estimate the hidden multi-
scale representation H = {hs}Ss=1 and, accessorily the attention gate variables G = {gse,sr}Sse,sr=1.
To do that, we formalize the problem within a conditional random field framework and write the Gibbs
distribution as P (H,G|I,Θ) = exp (−E(H,G, I,Θ)) /Z (I,Θ), where Θ is the set of parameters
and E is the energy function. As usual, we exploit both unary and binary potentials to couple the
hidden variables between them and to the observations. Importantly, the proposed binary potential is
gated, and thus only active when the gate is open. More formally the general form1 of the energy
function writes:

E(H,G, I,Θ) =
∑
s

∑
i

φh(hi
s, f

i
s)︸ ︷︷ ︸

Unary potential

+
∑
se,sr

∑
i,j

gise,srψh(hi
sr ,h

j
se)︸ ︷︷ ︸

Gated pairwise potential

. (1)

The first term of the energy function is a classical unary term that relates the hidden features to the
observed multi-scale CNN representations. The second term synthesizes the theoretical contribution
of the present study because it conditions the effect of the pair-wise potential ψh(hi

se ,h
j
sr ) upon

the gate hidden variable gise,sr . Fig. 1c depicts the model formulated in Equ.(1). If we remove the
attention gate variables, it becomes a general multi-scale CRFs as shown in Fig. 1b.

Given that formulation, and as it is typically the case in conditional random fields, we exploit the
mean-field approximation in order to derive a tractable inference procedure. Under this generic form,
the mean-field inference procedure writes:

q(hi
s) ∝ exp

(
φh(hi

s, f
i
s) +

∑
s′ 6=s

∑
j

Eq(gi
s′,s)
{gis′,s}Eq(hj

s′ )
{ψh(hi

s,h
j
s′)}

)
, (2)

q(gis′,s) ∝ exp
(
gis′,sEq(hi

s)

{∑
j

Eq(hj

s′ )

{
ψh(hi

s,h
j
s′)
}})

, (3)

where Eq stands for the expectation with respect to the distribution q.

Before deriving these formulae for our precise choice of potentials, we remark that, since the
gate is a binary variable, the expectation of its value is the same as q(gis′,s = 1). By defining:

Mi
s′,s = Eq(hi

s)

{∑
j Eq(hj

s′ )

{
ψh(hi

s,h
j
s′)
}}

, the expected value of the gate writes:

αi
s,s′ = Eq(gi

s′,s)
{gis′,s} =

q(gis′,s = 1)

q(gis′,s = 0) + q(gis′,s = 1)
= σ

(
−Mi

s′,s

)
, (4)

where σ() denotes the sigmoid function. This finding is specially relevant in the framework of CNN
since many of the attention models are typically obtained after applying the sigmoid function to the

1One could certainly include a unary potential for the gate variables as well. However this would imply that
there is a way to set/learn the a priori distribution of opening/closing a gate. In practice we did not observe any
notable difference between using or skipping the unary potential on g.
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features derived from a feed-forward network. Importantly, since the quantityMi
s′,s depends on

the expected values of the hidden features hi
s, the AG-CRF framework extends the unidirectional

connection from the features to the attention model, to a bidirectional connection in which the
expected value of the gate allows to refine the distribution of the hidden features as well.

2.3 AG-CRF Inference

In order to construct an operative model we need to define the unary and gated potentials φh and ψh.
In our case, the unary potential corresponds to an isotropic Gaussian:

φh(hi
s, f

i
s) = −a

i
s

2
‖hi

s − f is‖2, (5)

where ais > 0 is a weighting factor.

The gated binary potential is specifically designed for a two-fold objective. On the one hand, we
would like to learn and further exploit the relationships between hidden vectors at the same, as well
as at different scales. On the other hand, we would like to exploit previous knowledge on attention
models and include linear terms in the potential. Indeed, this would implicitly shape the gate variable
to include a linear operator on the features. Therefore, we chose a bilinear potential:

ψh(hi
s,h

j
s′) = h̃i

sK
i,j
s,s′ h̃

j
s′ , (6)

where h̃i
s = (hi>

s , 1)> and Ki,j
s,s′ ∈ R(Cs+1)×(Cs′+1) being Cs the size, i.e. the number of channels,

of the representation at scale s. If we write this matrix as Ki,j
s,s′ = (Li,j

s,s′ , l
i,j
s,s′ ; l

j,i>
s′,s , 1), then Li,j

s,s′

exploits the relationships between hidden variables, while li,js,s′ and lj,is′,s implement the classically used
linear relationships of the attention models. In order words, ψh models the pair-wise relationships
between features with the upper-left block of the matrix. Furthemore, ψh takes into account the linear
relationships by completing the hidden vectors with the unity. In all, the energy function writes:

E(H,G, I,Θ) = −
∑
s

∑
i

ais
2
‖hi

s − f is‖2 +
∑
se,sr

∑
i,j

gise,sr h̃
i
srK

i,j
sr,se h̃

j
se . (7)

Under these potentials, we can consequently update the mean-field inference equations to:

q(hi
s) ∝ exp

(
− ais

2
(‖hi

s‖ − 2hi>
s f is) +

∑
s′ 6=s

αi
s,s′h

i>
s

∑
j

(Li,j
s,s′ h̄

j
s′ + li,js,s′)

)
, (8)

where h̄j
s′ is the expected a posteriori value of hj

s′ .

The previous expression implies that the a posteriori distribution for hi
s is a Gaussian. The mean

vector of the Gaussian and the functionM write:

h̄i
s =

1

ais

(
aisf

i
s+
∑
s′ 6=s

αi
s,s′

∑
j

(Li,j
s,s′ h̄

j
s′+li,js,s′)

)
Mi

s′,s =
∑
j

(
h̄i
sL

i,j
s,s′ h̄

j
s′ + h̄i>

s li,js,s′ + h̄j>
s′ l

j,i
s′,s

)
which concludes the inference procedure. Furthermore, the proposed framework can be simplified to
obtain the traditional attention models. In most of the previous studies, the attention variables are
computed directly from the multi-scale features instead of computing them from the hidden variables.
Indeed, since many of these studies do not propose a probabilistic formulation, there are no hidden
variables and the attention is computed sequentially through the scales. We can emulate the same
behavior within the AG-CRF framework by modifying the gated potential as follows:

ψ̃h(hi
s,h

j
s′ , f

i
s, f

j
s′) = hi

sL
i,j
s,s′h

j
s′ + f i>s li,js,s′ + f j>s′ l

j,i
s′,s. (9)

This means that we keep the pair-wise relationships between hidden variables (as in any CRF) and let
the attention model be generated by a linear combination of the observed features from the CNN, as it
is traditionally done. The changes in the inference procedure are straightforward and reported in the
supplementary material due to space constraints. We refer to this model as partially-latent AG-CRFs
(PLAG-CRFs), whereas the more general one is denoted as fully-latent AG-CRFs (FLAG-CRFs).

2.4 Implementation with neural network for joint learning

In order to infer the hidden variables and learn the parameters of the AG-CRFs together with those
of the front-end CNN, we implement the AG-CRFs updates in neural network with several steps:
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Figure 2: An overview of the proposed AMH-Net for contour detection.

(i) message passing from the se-th scale to the current sr-th scale is performed with hse→sr ←
Lse→sr ⊗ hse , where ⊗ denotes the convolutional operation and Lse→sr denotes the corresponding
convolution kernel, (ii) attention map estimation q(gse,sr = 1) ← σ(hsr � (Lse→sr ⊗ hse) +
lse→sr ⊗ hse + lsr→se ⊗ hsr ), where Lse→sr , lse→sr and lsr→se are convolution kernels and �
represents element-wise product operation, and (iii) attention-gated message passing from other scales
and adding unary term: h̄sr = fsr ⊕ asr

∑
se 6=sr

(q(gse,sr = 1)� hse→sr ), where asr encodes the
effect of the aisr for weighting the message and can be implemented as a 1 × 1 convolution. The
symbol ⊕ denotes element-wise addition. In order to simplify the overall inference procedure, and
because the magnitude of the linear term of ψh is in practice negligible compared to the quadratic
term, we discard the message associated to the linear term. When the inference is complete, the final
estimate is obtained by convolving all the scales.

3 Exploiting AG-CRFs with a Multi-scale Hierarchical Network

AMH-Net Architecture. The proposed Attention-guided Multi-scale Hierarchical Network (AMH-
Net), as sketched in Figure 2, consists of a multi-scale hierarchical network (MH-Net) together with
the AG-CRF model described above. The MH-Net is constructed from a front-end CNN architecture
such as the widely used AlexNet [20], VGG [34] and ResNet [17]. One prominent feature of MH-Net
is its ability to generate richer multi-scale representations. In order to do that, we perform distinct
non-linear mappings (deconvolution D, convolution C and max-pooling M) upon fl, the CNN
feature representation from an intermediate layer l of the front-end CNN. This leads to a three-way
representation: fDl , fCl and fMl . Remarkably, while D upsamples the feature map, C maintains its
original size and M reduces it, and different kernel size is utilized for them to have different receptive
fields, then naturally obtaining complementary inter- and multi-scale representations. The fCl and
fMl are further aligned to the dimensions of the feature map fDl by the deconvolutional operation.
The hierarchy is implemented in two levels. The first level uses an AG-CRF model to fuse the three
representations of each layer l, thus refining the CNN features within the same scale. The second
level of the hierarchy uses an AG-CRF model to fuse the information coming from multiple CNN
layers. The proposed hierarchical multi-scale structure is general purpose and able to involve an
arbitrary number of layers and of diverse intra-layer representations.

End-to-End Network Optimization. The parameters of the model consist of the front-end CNN
parameters, Wc, the parameters to produce the richer decomposition from each layer l, Wl, the
parameters of the AG-CRFs of the first level of the hierarchy, {WI

l}Ll=1, and the parameters of
the AG-CRFs of the second level of the hierarchy, WII. L is the number of intermediate layers
used from the front-end CNN. In order to jointly optimize all these parameters we adopt deep
supervision [38] and we add an optimization loss associated to each AG-CRF module. In addition,
since the contour detection problem is highly unbalanced, i.e. contour pixels are significantly less than
non-contour pixels, we employ the modified cross-entropy loss function of [38]. Given a training data
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set D = {(Ip,Ep)}Pp=1 consisting of P RGB-contour groundtruth pairs, the loss function ` writes:

`
(
W
)

=
∑
p

β
∑

ekp∈E+
p

log P
(
ekp = 1|Ip;W

)
+
(
1− β

) ∑
ekp∈E−p

log P
(
ekp = 0|Ip;W

)
, (10)

where β = |E+
p |/(|E+

p | + |E−p |), E+
p is the set of contour pixels of image p and W is the set of

all parameters. The optimization is performed via the back-propagation algorithm with standard
stochastic gradient descent.

AMH-Net for contour detection. After training of the whole AMH-Net, the optimized network
parameters W are used for the contour detection task. Given a new test image I, the L+ 1 classifiers
produce a set of contour prediction maps {Êl}L+1

l=1 = AMH-Net(I;W). The Êl are obtained
from the AG-CRFs with elementary operations as detailed in the supplementary material. We
inspire from [38] to fuse the multiple scale predictions thus obtaining an average prediction Ê =∑

l Êl/(L+ 1).

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the proposed approach we employ two different benchmarks: the BSDS500
and the NYUDv2 datasets. The BSDS500 dataset is an extended dataset based on BSDS300 [1]. It
consists of 200 training, 100 validation and 200 testing images. The groundtruth pixel-level labels for
each sample are derived considering multiple annotators. Following [38, 41], we use all the training
and validation images for learning the proposed model and perform data augmentation as described
in [38]. The NYUDv2 [33] contains 1449 RGB-D images and it is split into three subsets, comprising
381 training, 414 validation and 654 testing images. Following [38] in our experiments we employ
images at full resolution (i.e. 560× 425 pixels) both in the training and in the testing phases.

Evaluation Metrics. During the test phase standard non-maximum suppression (NMS) [9] is first
applied to produce thinned contour maps. We then evaluate the detection performance of our approach
according to different metrics, including the F-measure at Optimal Dataset Scale (ODS) and Optimal
Image Scale (OIS) and the Average Precision (AP). The maximum tolerance allowed for correct
matches of edge predictions to the ground truth is set to 0.0075 for the BSDS500 dataset, and to .011
for the NYUDv2 dataset as in previous works [9, 14, 38].

Implementation Details. The proposed AMH-Net is implemented under the deep learning frame-
work Caffe [18]. The implementation code is available on Github2. The training and testing phase
are carried out on an Nvidia Titan X GPU with 12GB memory. The ResNet50 network pretrained on
ImageNet [8] is used to initialize the front-end CNN of AMH-Net. Due to memory constraints, our
implementation only considers three scales, i.e. we generate multi-scale features from three different
layers of the front-end CNN (i.e. res3d, res4f, res5c). In our CRF model we consider dependencies
between all scales. Within the AG-CRFs, the kernel size for all convolutional operations is set to
3× 3 with stride 1 and padding 1. To simplify the model optimization, the parameters aisr are set
as 0.1 for all scales during training. We choose this value as it corresponds to the best performance
after cross-validation in the range [0, 1]. The initial learning rate is set to 1e-7 in all our experiments,
and decreases 10 times after every 10k iterations. The total number of iterations for BSDS500 and
NYUD v2 is 40k and 30k, respectively. The momentum and weight decay parameters are set to 0.9
and 0.0002, as in [38]. As the training images have different resolution, we need to set the batch size
to 1, and for the sake of smooth convergence we updated the parameters only every 10 iterations.

4.2 Experimental Results

In this section, we present the results of our evaluation, comparing our approach with several state
of the art methods. We further conduct an in-depth analysis of our method, to show the impact of
different components on the detection performance.

Comparison with state of the art methods. We first consider the BSDS500 dataset and compare
the performance of our approach with several traditional contour detection methods, including
Felz-Hut [11], MeanShift [7], Normalized Cuts [32], ISCRA [30], gPb-ucm [1], SketchTokens [22],

2https://github.com/danxuhk/AttentionGatedMulti-ScaleFeatureLearning
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Figure 3: Qualitative results on the BSDS500 (left) and the NYUDv2 (right) test samples. The 2nd
(4th) and 3rd (6th) columns are the ground-truth and estimated contour maps respectively.

Table 1: BSDS500 dataset: quantitative results.

Method ODS OIS AP

Human .800 .800 -

Felz-Hutt[11] .610 .640 .560
Mean Shift[7] .640 .680 .560
Normalized Cuts[32] .641 .674 .447
ISCRA[30] .724 .752 .783
gPb-ucm[1] .726 .760 .727
Sketch Tokens[22] .727 .746 .780
MCG[28] .747 .779 .759

DeepEdge[2] .753 .772 .807
DeepContour[31] .756 .773 .797
LEP[46] .757 .793 .828
HED[38] .788 .808 .840
CEDN[41] .788 .804 .834
COB [24] .793 .820 .859
RCF [23] (not comp.) .811 .830 –

AMH-Net (fusion) .798 .829 .869

Table 2: NYUDv2 dataset: quantitative results.

Method ODS OIS AP

gPb-ucm [1] .632 .661 .562
OEF [15] .651 .667 –
Silberman et al. [33] .658 .661 –
SemiContour [45] .680 .700 .690
SE [10] .685 .699 .679
gPb+NG [13] .687 .716 .629
SE+NG+ [14] .710 .723 .738

HED (RGB) [38] .720 .734 .734
HED (HHA) [38] .682 .695 .702
HED (RGB + HHA) [38] .746 .761 .786
RCF (RGB) + HHA) [23] .757 .771 –

AMH-Net (RGB) .744 .758 .765
AMH-Net (HHA) .716 .729 .734
AMH-Net (RGB+HHA) .771 .786 .802

MCG [28], LEP [46], and more recent CNN-based methods, including DeepEdge [2], DeepCon-
tour [31], HED [38], CEDN [41], COB [24]. We also report results of the RCF method [23], although
they are not comparable because in [23] an extra dataset (Pascal Context) was used during RCF
training to improve the results on BSDS500. In this series of experiments we consider AMH-Net with
FLAG-CRFs. The results of this comparison are shown in Table 1 and Fig. 4a. AMH-Net obtains
an F-measure (ODS) of 0.798, thus outperforms all previous methods. The improvement over the
second and third best approaches, i.e. COB and HED, is 0.5% and 1.0%, respectively, which is not
trivial to achieve on this challenging dataset. Furthermore, when considering the OIS and AP metrics,
our approach is also better, with a clear performance gap.

To perform experiments on NYUDv2, following previous works [38] we consider three different
types of input representations, i.e. RGB, HHA [14] and RGB-HHA data. The results corresponding
to the use of both RGB and HHA data (i.e. RGB+HHA) are obtained by performing a weighted
average of the estimates obtained from two AMH-Net models trained separately on RGB and HHA
representations. As baselines we consider gPb-ucm [1], OEF [15], the method in [33], SemiCon-
tour [45], SE [10], gPb+NG [13], SE+NG+ [14], HED [38] and RCF [23]. In this case the results
are comparable to the RCF [23] since the experimental protocol is exactly the same. All of them
are reported in Table 2 and Fig. 4b. Again, our approach outperforms all previous methods. In
particular, the increased performance with respect to HED [38] and RCF [23] confirms the benefit of
the proposed multi-scale feature learning and fusion scheme. Examples of qualitative results on the
BSDS500 and the NYUDv2 datasets are shown in Fig. 3.

Ablation Study. To further demonstrate the effectiveness of the proposed model and analyze the
impact of the different components of AMH-Net on the countour detection task, we conduct an
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Figure 4: Precision-Recall Curves on the BSDS500 and NYUDv2 test sets.

ablation study considering the NYUDv2 dataset (RGB data). We tested the following models:
(i) AMH-Net (baseline), which removes the first-level hierarchy and directly concatenates the
feature maps for prediction, (ii) AMH-Net (w/o AG-CRFs), which employs the proposed multi-scale
hierarchical structure but discards the AG-CRFs, (iii) AMH-Net (w/ CRFs), obtained by replacing
our AG-CRFs with a multi-scale CRF model without attention gating, (iv) AMH-Net (w/o deep
supervision) obtained removing intermediate loss functions in AMH-Net and (v) AMH-Net with the
proposed two versions of the AG-CRFs model, i.e. PLAG-CRFs and FLAG-CRFs. The results of
our comparison are shown in Table 3, where we also consider as reference traditional multi-scale
deep learning models employing multi-scale representations, i.e. Hypercolumn [16] and HED [38].

Table 3: Performance analysis on NYUDv2 RGB data.
Method ODS OIS AP

Hypercolumn [16] .718 .729 .731
HED [38] .720 .734 .734

AMH-Net (baseline) .711 .720 .724
AMH-Net (w/o AG-CRFs) .722 .732 .739
AMH-Net (w/ CRFs) .732 .742 .750
AMH-Net (w/o deep supervision) .725 .738 .747

AMH-Net (w/ PLAG-CRFs) .737 .749 .746
AMH-Net (w/ FLAG-CRFs) .744 .758 .765

These results clearly show the advantages of
our contributions. The ODS F-measure of
AMH-Net (w/o AG-CRFs) is 1.1% higher
than AMH-Net (baseline), clearly demon-
strating the effectiveness of the proposed hi-
erarchical network and confirming our intu-
ition that exploiting more richer and diverse
multi-scale representations is beneficial. Ta-
ble 3 also shows that our AG-CRFs plays
a fundamental role for accurate detection,
as AMH-Net (w/ FLAG-CRFs) leads to an
improvement of 1.9% over AMH-Net (w/o
AG-CRFs) in terms of OSD. Finally, AMH-Net (w/ FLAG-CRFs) is 1.2% and 1.5% better than
AMH-Net (w/ CRFs) in ODS and AP metrics respectively, confirming the effectiveness of embedding
an attention mechanism in the multi-scale CRF model. AMH-Net (w/o deep supervision) decreases
the overall performance of our method by 1.9% in ODS, showing the crucial importance of deep su-
pervision for better optimization of the whole AMH-Net. Comparing the performance of the proposed
two versions of the AG-CRF model, i.e. PLAG-CRFs and FLAG-CRFs, we can see that AMH-Net
(FLAG-CRFs) slightly outperforms AMH-Net (PLAG-CRFs) in both ODS and OIS, while bringing a
significant improvement (around 2%) in AP. Finally, considering HED [38] and Hypercolumn [16],
it is clear that our AMH-Net (FLAG-CRFs) is significantly better than these methods. Importantly,
our approach utilizes only three scales while for HED [38] and Hypercolumn [16] we consider five
scales. We believe that our accuracy could be further boosted by involving more scales.

5 Conclusions

We presented a novel multi-scale convolutional neural network for contour detection. The proposed
model introduces two main components, i.e. a hierarchical architecture for generating more rich
and complementary multi-scale feature representations, and an Attention-Gated CRF model for
robust feature refinement and fusion. The effectiveness of our approach is demonstrated through
extensive experiments on two public available datasets and state of the art detection performance is

8



achieved. The proposed approach addresses a general problem, i.e. how to generate rich multi-scale
representations and optimally fuse them. Therefore, we believe it may be also useful for other
pixel-level tasks.
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