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Abstract

We study the resilience to Byzantine failures of distributed implementations of
Stochastic Gradient Descent (SGD). So far, distributed machine learning frame-
works have largely ignored the possibility of failures, especially arbitrary (i.e.,
Byzantine) ones. Causes of failures include software bugs, network asynchrony,
biases in local datasets, as well as attackers trying to compromise the entire system.
Assuming a set of n workers, up to f being Byzantine, we ask how resilient can
SGD be, without limiting the dimension, nor the size of the parameter space. We
first show that no gradient aggregation rule based on a linear combination of the vec-
tors proposed by the workers (i.e, current approaches) tolerates a single Byzantine
failure. We then formulate a resilience property of the aggregation rule capturing
the basic requirements to guarantee convergence despite f Byzantine workers. We
propose Krum, an aggregation rule that satisfies our resilience property, which we
argue is the first provably Byzantine-resilient algorithm for distributed SGD. We
also report on experimental evaluations of Krum.

1 Introduction

The increasing amount of data available [6], together with the growing complexity of machine
learning models [27], has led to learning schemes that require a lot of computational resources. As a
consequence, most industry-grade machine-learning implementations are now distributed [1]. For
example, as of 2012, Google reportedly used 16.000 processors to train an image classifier [22]. More
recently, attention has been given to federated learning and federated optimization settings [15, 16, 23]
with a focus on communication efficiency. However, distributing a computation over several machines
(worker processes) induces a higher risk of failures. These include crashes and computation errors,
stalled processes, biases in the way the data samples are distributed among the processes, but also, in
the worst case, attackers trying to compromise the entire system. The most robust system is one that
tolerates Byzantine failures [17], i.e., completely arbitrary behaviors of some of the processes.

A classical approach to mask failures in distributed systems is to use a state machine replication
protocol [26], which requires however state transitions to be applied by all worker processes. In the
case of distributed machine learning, this constraint can be translated in two ways: either (a) the
processes agree on a sample of data based on which they update their local parameter vectors, or (b)
they agree on how the parameter vector should be updated. In case (a), the sample of data has to be
transmitted to each process, which then has to perform a heavyweight computation to update its local
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parameter vector. This entails communication and computational costs that defeat the entire purpose
of distributing the work. In case (b), the processes have no way to check if the chosen update for the
parameter vector has indeed been computed correctly on real data: a Byzantine process could have
proposed the update and may easily prevent the convergence of the learning algorithm. Neither of
these solutions is satisfactory in a realistic distributed machine learning setting.

In fact, most learning algorithms today rely on a core component, namely stochastic gradient descent
(SGD) [4, 13], whether for training neural networks [13], regression [34], matrix factorization [12]
or support vector machines [34]. In all those cases, a cost function – depending on the parameter
vector – is minimized based on stochastic estimates of its gradient. Distributed implementations of
SGD [33] typically take the following form: a single parameter server is in charge of updating the
parameter vector, while worker processes perform the actual update estimation, based on the share of
data they have access to. More specifically, the parameter server executes learning rounds, during
each of which, the parameter vector is broadcast to the workers. In turn, each worker computes an
estimate of the update to apply (an estimate of the gradient), and the parameter server aggregates
their results to finally update the parameter vector. Today, this aggregation is typically implemented
through averaging [25], or variants of it [33, 18, 31].

This paper addresses the fundamental question of how a distributed SGD can be devised to tolerate f
Byzantine processes among the n workers.

Contributions. We first show in this paper that no linear combination (current approaches) of the
updates proposed by the workers can tolerate a single Byzantine worker. Basically, a single Byzantine
worker can force the parameter server to choose any arbitrary vector, even one that is too large in
amplitude or too far in direction from the other vectors. Clearly, the Byzantine worker can prevent
any classic averaging-based approach to converge. Choosing the appropriate aggregation of the
vectors proposed by the workers turns out to be challenging. A non-linear, squared-distance-based
aggregation rule, that selects, among the proposed vectors, the vector “closest to the barycenter” (for
example by taking the vector that minimizes the sum of the squared distances to every other vector),
might look appealing. Yet, such a squared-distance-based aggregation rule tolerates only a single
Byzantine worker. Two Byzantine workers can collude, one helping the other to be selected, by
moving the barycenter of all the vectors farther from the “correct area”.

We formulate a Byzantine resilience property capturing sufficient conditions for the parameter server’s
aggregation rule to tolerate f Byzantine workers. Essentially, to guarantee that the cost will decrease
despite Byzantine workers, we require the vector output chosen by the parameter server (a) to point,
on average, to the same direction as the gradient and (b) to have statistical moments (up to the fourth
moment) bounded above by a homogeneous polynomial in the moments of a correct estimator of
the gradient. One way to ensure such a resilience property is to consider a majority-based approach,
looking at every subset of n − f vectors, and considering the subset with the smallest diameter.
While this approach is more robust to Byzantine workers that propose vectors far from the correct
area, its exponential computational cost is prohibitive. Interestingly, combining the intuitions of the
majority-based and squared-distance 2-based methods, we can choose the vector that is somehow
the closest to its n − f neighbors. Namely, the one that minimizes the sum of squared distances
to its n − f closest vectors. This is the main idea behind our aggregation rule, we call Krum3.
Assuming 2f + 2 < n, we show that Krum satisfies the resilience property aforementioned and the
corresponding machine learning scheme converges. An important advantage of Krum is its (local)
time complexity (O(n2 · d)), linear in the dimension of the gradient, where d is the dimension of the
parameter vector. (In modern machine learning, the dimension d of the parameter vector may take
values in the hundreds of billions [30].) For simplicity of presentation, the version of Krum we first
consider selects only one vector. We also discuss other variants.

We evaluate Krum experimentally, and compare it to classical averaging. We confirm the very fact
that averaging does not stand Byzantine attacks, while Krum does. In particular, we report on attacks
by omniscient adversaries – aware of a good estimate of the gradient – that send the opposite vector
multiplied by a large factor, as well as attacks by adversaries that send random vectors drawn from a
Gaussian distribution (the larger the variance of the distribution, the stronger the attack). We also

2In all this paper, distances are computed with the Euclidean norm.
3Krum, in Greek Κρούμος, was a Bulgarian Khan of the end of the eighth century, who undertook offensive

attacks against the Byzantine empire. Bulgaria doubled in size during his reign.
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evaluate the extent to which Krum might slow down learning (compared to averaging) when there
are no Byzantine failures. Interestingly, as we show experimentally, this slow down occurs only
when the mini-batch size is close to 1. In fact, the slowdown can be drastically reduced by choosing
a reasonable mini-batch size. We also evaluate Multi-Krum, a variant of Krum, which, intuitively,
interpolates between Krum and averaging, thereby allowing to mix the resilience properties of Krum
with the convergence speed of averaging. Multi-Krum outperforms other aggregation rules like the
medoid, inspired by the geometric median.

Paper Organization. Section 2 recalls the classical model of distributed SGD. Section 3 proves that
linear combinations (solutions used today) are not resilient even to a single Byzantine worker, then
introduces our new concept of (α, f)-Byzantine resilience. Section 4 introduces our Krum function,
computes its computational cost and proves its (α, f)-Byzantine resilience. Section 5 analyzes the
convergence of a distributed SGD using Krum. Section 6 presents our experimental evaluation of
Krum. We discuss related work and open problems in Section 7. Due to space limitations, some
proofs and complementary experimental results are given as supplementary material.

2 Model

We consider the general distributed system model of [1], consisting of a parameter server4, and
n workers, f of them possibly Byzantine (behaving arbitrarily). Computation is divided into (in-
finitely many) synchronous rounds. During round t, the parameter server broadcasts its parameter
vector xt ∈ Rd to all the workers. Each correct worker p computes an estimate V tp = G(xt, ξ

t
p) of

the gradient ∇Q(xt) of the cost function Q, where ξtp is a random variable representing, e.g.,
the sample (or a mini-batch of samples) drawn from the dataset. A Byzantine worker b pro-
poses a vector V tb which can deviate arbitrarily from the vector it is supposed to send if it was
correct, i.e., according to the algorithm assigned to it by the system developer (see Figure 1).

Figure 1: The gradient estimates computed by cor-
rect workers (black dashed arrows) are distributed
around the actual gradient (solid arrow) of the cost
function (thin black curve). A Byzantine worker
can propose an arbitrary vector (red dotted arrow).

Since the communication is synchronous, if the
parameter server does not receive a vector value
V tb from a given Byzantine worker b, then the
parameter server acts as if it had received the
default value V tb = 0 instead.

The parameter server computes a vector
F (V t1 , . . . , V

t
n) by applying a deterministic

function F (aggregation rule) to the vectors re-
ceived. We refer to F as the aggregation rule of
the parameter server. The parameter server up-
dates the parameter vector using the following
SGD equation

xt+1 = xt − γt · F (V t1 , . . . , V tn).

The correct (non-Byzantine) workers are assumed to compute unbiased estimates of the gradient
∇Q(xt). More precisely, in every round t, the vectors V ti ’s proposed by the correct workers are
independent identically distributed random vectors, V ti ∼ G(xt, ξti) with EξtiG(xt, ξ

t
i) = ∇Q(xt).

This can be achieved by ensuring that each sample of data used for computing the gradient is drawn
uniformly and independently, as classically assumed in the literature of machine learning [3].

The Byzantine workers have full knowledge of the system, including the aggregation rule F as well
as the vectors proposed by the workers. They can furthermore collaborate with each other [21].

3 Byzantine Resilience

In most SGD-based learning algorithms used today [4, 13, 12], the aggregation rule consists in
computing the average 5 of the input vectors. Lemma 1 below states that no linear combination of the
vectors can tolerate a single Byzantine worker. In particular, averaging is not Byzantine resilient.

4The parameter server is assumed to be reliable. Classical techniques of state-machine replication can be
used to ensure this.

5Or a closely related rule.
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Lemma 1. Consider an aggregation rule Flin of the form Flin(V1, . . . , Vn) =
∑n
i=1 λi · Vi, where

the λi’s are non-zero scalars. Let U be any vector in Rd. A single Byzantine worker can make F
always select U . In particular, a single Byzantine worker can prevent convergence.

Proof. Immediate: if the Byzantine worker proposes Vn = 1
λn
·U −

∑n−1
i=1

λi

λn
Vi, then F = U .6

In the following, we define basic requirements on an appropriate Byzantine-resilient aggregation rule.
Intuitively, the aggregation rule should output a vector F that is not too far from the “real” gradient g,
more precisely, the vector that points to the steepest direction of the cost function being optimized.
This is expressed as a lower bound (condition (i)) on the scalar product of the (expected) vector F
and g. Figure 2 illustrates the situation geometrically. If EF belongs to the ball centered at g with
radius r, then the scalar product is bounded below by a term involving sinα = r/‖g‖.
Condition (ii) is more technical, and states that the moments of F should be controlled by the
moments of the (correct) gradient estimator G. The bounds on the moments of G are classically used
to control the effects of the discrete nature of the SGD dynamics [3]. Condition (ii) allows to transfer
this control to the aggregation rule.

Definition 1 ((α, f)-Byzantine Resilience). Let 0 ≤ α < π/2 be any angular value, and any
integer 0 ≤ f ≤ n. Let V1, . . . , Vn be any independent identically distributed random vectors in Rd,
Vi ∼ G, with EG = g. Let B1, . . . , Bf be any random vectors in Rd, possibly dependent on the Vi’s.
aggregation rule F is said to be (α, f)-Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, vector

F = F (V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn)

satisfies (i) 〈EF, g〉 ≥ (1− sinα) · ‖g‖2 > 0 and (ii) for r = 2, 3, 4, E ‖F‖r is bounded above by a
linear combination of terms E ‖G‖r1 . . .E ‖G‖rn−1 with r1 + · · ·+ rn−1 = r.

4 The Krum Function

r
α

g

Figure 2: If ‖EF − g‖ ≤ r then 〈EF, g〉 is
bounded below by (1− sinα)‖g‖2 where sinα =
r/‖g‖.

We now introduce Krum, our aggregation
rule, which, we show, satisfies the (α, f)-
Byzantine resilience condition. The barycen-
tric aggregation rule Fbary = 1

n

∑n
i=1 Vi can

be defined as the vector in Rd that mini-
mizes the sum of squared distances 7 to the
Vi’s

∑n
i=1 ‖Fbary − Vi‖

2. Lemma 1, however,
states that this approach does not tolerate even a
single Byzantine failure. One could try to select
the vector U among the Vi’s which minimizes
the sum

∑
i ‖U − Vi‖

2, i.e., which is “closest
to all vectors”. However, because such a sum involves all the vectors, even those which are very far,
this approach does not tolerate Byzantine workers: by proposing large enough vectors, a Byzantine
worker can force the total barycenter to get closer to the vector proposed by another Byzantine worker.

Our approach to circumvent this issue is to preclude the vectors that are too far away. More precisely,
we define our Krum aggregation rule KR(V1, . . . , Vn) as follows. For any i 6= j, we denote by i→ j
the fact that Vj belongs to the n− f − 2 closest vectors to Vi. Then, we define for each worker i, the
score s(i) =

∑
i→j ‖Vi − Vj‖

2 where the sum runs over the n− f − 2 closest vectors to Vi. Finally,
KR(V1, . . . , Vn) = Vi∗ where i∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.8

Lemma 2. The expected time complexity of the Krum Function KR(V1, . . . , Vn), where V1, . . . , Vn
are d-dimensional vectors, is O(n2 · d)

6Note that the parameter server could cancel the effects of the Byzantine behavior by setting, for example,
λn to 0. This however requires means to detect which worker is Byzantine.

7Removing the square of the distances leads to the geometric median, we discuss this when optimizing Krum.
8If two or more workers have the minimal score, we choose the one with the smallest identifier.
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Proof. For each Vi, the parameter server computes the n squared distances ‖Vi − Vj‖2 (timeO(n·d)).
Then the parameter server selects the first n − f − 1 of these distances (expected time O(n) with
Quickselect) and sums their values (time O(n · d)). Thus, computing the score of all the Vi’s takes
O(n2 · d). An additional term O(n) is required to find the minimum score, but is negligible relatively
to O(n2 · d).

Proposition 1 below states that, if 2f + 2 < n and the gradient estimator is accurate enough, (its
standard deviation is relatively small compared to the norm of the gradient), then the Krum function
is (α, f)-Byzantine-resilient, where angle α depends on the ratio of the deviation over the gradient.

Proposition 1. Let V1, . . . , Vn be any independent and identically distributed random d-dimensional
vectors s.t Vi ∼ G, with EG = g and E ‖G− g‖2 = dσ2. Let B1, . . . , Bf be any f random vectors,
possibly dependent on the Vi’s. If 2f + 2 < n and η(n, f)

√
d · σ < ‖g‖, where

η(n, f) =
def

√
2

(
n− f +

f · (n− f − 2) + f2 · (n− f − 1)

n− 2f − 2

)
=

{
O(n) if f = O(n)
O(
√
n) if f = O(1)

,

then the Krum function KR is (α, f)-Byzantine resilient where 0 ≤ α < π/2 is defined by

sinα =
η(n, f) ·

√
d · σ

‖g‖
.

The condition on the norm of the gradient, η(n, f) ·
√
d · σ < ‖g‖, can be satisfied, to a certain

extent, by having the (correct) workers compute their gradient estimates on mini-batches [3]. Indeed,
averaging the gradient estimates over a mini-batch divides the deviation σ by the squared root of the
size of the mini-batch. For the sake of concision, we only give here the sketch of the proof. (We give
the detailed proof in the supplementary material.)

Proof. (Sketch) Without loss of generality, we assume that the Byzantine vectors B1, . . . , Bf occupy
the last f positions in the list of arguments of KR, i.e., KR = KR(V1, . . . , Vn−f , B1, . . . , Bf ).
Let i∗ be the index of the vector chosen by the Krum function. We focus on the condition (i) of
(α, f)-Byzantine resilience (Definition 1).

Consider first the case where Vi∗ = Vi ∈ {V1, . . . , Vn−f} is a vector proposed by a correct process.
The first step is to compare the vector Vi with the average of the correct vectors Vj such that i→ j.
Let δc(i) be the number of such Vj’s.

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(i)

∑
i→ correct j

E ‖Vi − Vj‖2 ≤ 2dσ2. (1)

The last inequality holds because the right-hand side of the first inequality involves only vectors
proposed by correct processes, which are mutually independent and follow the distribution of G.

Now, consider the case where Vi∗ = Bk ∈ {B1, . . . , Bf} is a vector proposed by a Byzantine
process. The fact that k minimizes the score implies that for all indices i of vectors proposed by
correct processes∑

k→ correct j

‖Bk − Vj‖2 +
∑

k→ byz l

‖Bk −Bl‖2 ≤
∑

i→ correct j

‖Vi − Vj‖2 +
∑

i→ byz l

‖Vi −Bl‖2 .

Then, for all indices i of vectors proposed by correct processes∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
1

δc(k)

∑
i→ byz l

‖Vi −Bl‖2︸ ︷︷ ︸
D2(i)

.

The term D2(i) is the only term involving vectors proposed by Byzantine processes. However, the
correct process i has n− f − 2 neighbors and f + 1 non-neighbors. Therefore, there exists a correct
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process ζ(i) which is farther from i than every neighbor j of i (including the Byzantine neighbors).
In particular, for all l such that i→ l, ‖Vi −Bl‖2 ≤ ‖Vi − Vζ(i)‖2. Thus∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
n− f − 2− δc(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2 .
(2)

Combining equations 1, 2, and a union bound yields ‖EKR− g‖2 ≤ η
√
d‖g‖, which, in turn, implies

〈EKR, g〉 ≥ (1−sinα)‖g‖2. Condition (ii) is proven by bounding the moments of KR with moments
of the vectors proposed by the correct processes only, using the same technique as above. The full
proof is provided in the supplementary material.

5 Convergence Analysis

In this section, we analyze the convergence of the SGD using our Krum function defined in Section 4.
The SGD equation is expressed as follows

xt+1 = xt − γt · KR(V t1 , . . . , V
t
n)

where at least n− f vectors among the V ti ’s are correct, while the other ones may be Byzantine. For
a correct index i, V ti = G(xt, ξ

t
i) where G is the gradient estimator. We define the local standard

deviation σ(x) by
d · σ2(x) = E ‖G(x, ξ)−∇Q(x)‖2 .

The following proposition considers an (a priori) non-convex cost function. In the context of non-
convex optimization, even in the centralized case, it is generally hopeless to aim at proving that the
parameter vector xt tends to a local minimum. Many criteria may be used instead. We follow [3],
and we prove that the parameter vector xt almost surely reaches a “flat” region (where the norm of
the gradient is small), in a sense explained below.
Proposition 2. We assume that (i) the cost function Q is three times differentiable with continuous
derivatives, and is non-negative, Q(x) ≥ 0; (ii) the learning rates satisfy

∑
t γt =∞ and

∑
t γ

2
t <

∞; (iii) the gradient estimator satisfies EG(x, ξ) = ∇Q(x) and ∀r ∈ {2, . . . , 4}, E‖G(x, ξ)‖r ≤
Ar+Br‖x‖r for some constants Ar, Br; (iv) there exists a constant 0 ≤ α < π/2 such that for all x

η(n, f) ·
√
d · σ(x) ≤ ‖∇Q(x)‖ · sinα;

(v) finally, beyond a certain horizon, ‖x‖2 ≥ D, there exist ε > 0 and 0 ≤ β < π/2− α such that
‖∇Q(x)‖ ≥ ε > 0 and 〈x,∇Q(x)〉

‖x‖·‖∇Q(x)‖ ≥ cosβ. Then the sequence of gradients ∇Q(xt) converges
almost surely to zero.

η
√
dσα

β ∇Q(xt)

xt

Figure 3: Condition on the angles between xt,
∇Q(xt) and EKRt, in the region ‖xt‖2 > D.

Conditions (i) to (iv) are the same conditions as
in the non-convex convergence analysis in [3].
Condition (v) is a slightly stronger condition
than the corresponding one in [3], and states
that, beyond a certain horizon, the cost function
Q is “convex enough”, in the sense that the di-
rection of the gradient is sufficiently close to the
direction of the parameter vector x. Condition
(iv), however, states that the gradient estimator
used by the correct workers has to be accurate
enough, i.e., the local standard deviation should
be small relatively to the norm of the gradient.
Of course, the norm of the gradient tends to zero near, e.g., extremal and saddle points. Actually, the
ratio η(n, f) ·

√
d · σ/ ‖∇Q‖ controls the maximum angle between the gradient∇Q and the vector

chosen by the Krum function. In the regions where ‖∇Q‖ < η(n, f) ·
√
d · σ, the Byzantine workers

may take advantage of the noise (measured by σ) in the gradient estimator G to bias the choice of
the parameter server. Therefore, Proposition 2 is to be interpreted as follows: in the presence of
Byzantine workers, the parameter vector xt almost surely reaches a basin around points where the
gradient is small (‖∇Q‖ ≤ η(n, f) ·

√
d · σ), i.e., points where the cost landscape is “almost flat”.

Note that the convergence analysis is based only on the fact that function KR is (α, f)-Byzantine
resilient. The complete proof of Proposition 2 is deferred to the supplementary material.
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Figure 4: Cross-validation error evolution with rounds, respectively in the absence and in the
presence of 33% Byzantine workers. The mini-batch size is 3. With 0% Gaussian Byzantine workers,
averaging converges faster than Krum. With 33% Gaussian Byzantine workers, averaging does not
converge, whereas Krum behaves as if there were 0% Byzantine workers.

6 Experimental Evaluation

We report here on the evaluation of the convergence and resilience properties of Krum, as well as an
optimized variant of it. (We also discuss other variants of Krum in the supplementary material.)

(Resilience to Byzantine processes). We consider the task of spam filtering (dataset spam-
base [19]). The learning model is a multi-layer perceptron (MLP) with two hidden layers. There are
n = 20 worker processes. Byzantine processes propose vectors drawn from a Gaussian distribution
with mean zero, and isotropic covariance matrix with standard deviation 200. We refer to this behavior
as Gaussian Byzantine. Each (correct) worker estimates the gradient on a mini-batch of size 3. We
measure the error using cross-validation. Figure 4 shows how the error (y-axis) evolves with the
number of rounds (x-axis).

In the first plot (left), there are no Byzantine workers. Unsurprisingly, averaging converges faster
than Krum. In the second plot (right), 33% of the workers are Gaussian Byzantine. In this case,
averaging does not converge at all, whereas Krum behaves as if there were no Byzantine workers.
This experiment confirms that averaging does not tolerate (the rather mild) Gaussian Byzantine
behavior, whereas Krum does.

(The Cost of Resilience). As seen above, Krum slows down learning when there are no Byzantine
workers. The following experiment shows that this overhead can be significantly reduced by slightly
increasing the mini-batch size. To highlight the effect of the presence of Byzantine workers, the
Byzantine behavior has been set as follows: each Byzantine worker computes an estimate of the
gradient over the whole dataset (yielding a very accurate estimate of the gradient), and proposes the
opposite vector, scaled to a large length. We refer to this behavior as omniscient.

Figure 5 displays how the error value at the 500-th round (y-axis) evolves when the mini-batch size
varies (x-axis). In this experiment, we consider the tasks of spam filtering (dataset spambase) and
image classification (dataset MNIST). The MLP model is used in both cases. Each curve is obtained
with either 0 or 45% of omniscient Byzantine workers.

In all cases, averaging still does not tolerate Byzantine workers, but yields the lowest error when
there are no Byzantine workers. However, once the size of the mini-batch reaches the value 20, Krum
with 45% omniscient Byzantine workers is as accurate as averaging with 0% Byzantine workers. We
observe a similar pattern for a ConvNet as provided in the supplementary material.

(Multi-Krum). For the sake of presentation simplicity, we considered a version of Krum which
selects only one vector among the vector proposed by the workers. We also propose a variant of
Krum, we call Multi-Krum. Multi-Krum computes, for each vector proposed, the score as in the
Krum function. Then, Multi-Krum selects the m ∈ {1, . . . , n} vectors V ∗1 , . . . , V

∗
m which score the

best, and outputs their average 1
m

∑
i V
∗
i . Note that, the cases m = 1 and m = n correspond to

Krum and averaging respectively.

Figure 6 shows how the error (y-axis) evolves with the number of rounds (x-axis). In the figure, we
consider the task of spam filtering (dataset spambase), and the MLP model (the same comparison
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Figure 5: Cross-validation error at round 500 when increasing the mini-batch size. The two figures
on the rights are zoomed versions of the two on the left). With a reasonably large mini-batch size
(arround 10 for MNIST and 30 for Spambase), Krum with 45% omniscient Byzantine workers is as
accurate as averaging with 0% Byzantine workers.
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Figure 6: Cross-validation error evolution with rounds. The mini-batch size is 3. Multi-Krum with
33% Gaussian Byzantine workers converges as fast as averaging with 0% Byzantine workers.

is done for the task of image classification with a ConvNet and is provided in the supplementary
material). The Multi-Krum parameter m is set to m = n− f . Figure 6 shows that Multi-Krum with
33% Byzantine workers is as efficient as averaging with 0% Byzantine workers.

From the practitionner’s perspective, the parameter m may be used to set a specific trade-off between
convergence speed and resilience to Byzantine workers.

7 Concluding Remarks

(The Distributed Computing Perspective). Although seemingly related, results in d-dimensional
approximate agreement [24, 14] cannot be applied to our Byzantine-resilient machine context for
the following reasons: (a) [24, 14] assume that the set of vectors that can be proposed to an instance
of the agreement is bounded so that at least f + 1 correct workers propose the same vector, which
would require a lot of redundant work in our setting; and more importantly, (b) [24] requires a local
computation by each worker that is in O(nd). While this cost seems reasonable for small dimensions,
such as, e.g., mobile robots meeting in a 2D or 3D space, it becomes a real issue in the context
of machine learning, where d may be as high as 160 billion [30] (making d a crucial parameter
when considering complexities, either for local computations, or for communication rounds). The
expected time complexity of the Krum function is O(n2 · d). A closer approach to ours has been
recently proposed in [28, 29]. In [28], the study only deals with parameter vectors of dimension
one, which is too restrictive for today’s multi-dimensional machine learning. In [29], the authors
tackle a multi-dimensional situation, using an iterated approximate Byzantine agreement that reaches
consensus asymptotically. This is however only achieved on a finite set of possible environmental
states and cannot be used in the continuous context of stochastic gradient descent.

(The Statistics and Machine Learning View). Our work looks at the resilience of the aggregation
rule using ideas that are close to those of [11], and somehow classical in theoretical statistics on
the robustness of the geometric median and the notion of breakdown [7]. The closest concept to a
breakdown in our work is the maximum fraction of Byzantine workers that can be tolerated, i.e. n−22n ,
which reaches the optimal theoretical value (1/2) asymptotically on n. It is known that the geometric
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median does achieve the optimal breakdown. However, no closed form nor an exact algorithm to
compute the geometric median is known (only approximations are available [5] and their Byzantine
resilience is an open problem.). An easily computable variant of the median is the Medoid, which is
the proposed vector minimizing the sum of distances to all other proposed vectors. The Medoid can
be computed with a similar algorithm to Krum. We show however in the supplementary material that
the implementation of the Medoid is outperformed by multi-Krum.

(Robustness Within the Model). It is important to keep in mind that this work deals with robustness
from a coarse-grained perspective: the unit of failure is a worker, receiving its copy of the model and
estimating gradients, based on either local data or delegated data from a server. The nature of the
model itself is not important, the distributed system can be training models spanning a large range
from simple regression to deep neural networks. As long as this training is using gradient-based
learning, our algorithm to aggregate gradients, Krum, provably ensures convergence when a simple
majority of nodes are not compromised by an attacker.

A natural question to consider is the fine-grained view: is the model itself robust to internal per-
turbations? In the case of neural networks, this question can somehow be tied to neuroscience
considerations: could some neurons and/or synapses misbehave individually without harming the
global outcome? We formulated this question in another work and proved a tight upper bound on the
resulting global error when a set of nodes is removed or is misbehaving [8]. One of the many practical
consequences [9] of such fine-grained view is the understanding of memory cost reduction trade-offs
in deep learning. Such memory cost reduction can be viewed as the introduction of precision errors
at the level of each neuron and/or synapse [8].

Other approaches to robustness within the model tackled adversarial situations in machine learning
with a focus on adversarial examples (during inference) [10, 32, 11] instead of adversarial gradients
(during training) as we did for Krum. Robustness to adversarial input can be viewed through the
fine-grained lens we introduced in [8], for instance, one can see perturbations of pixels in the
inputs as perturbations of neurons in layer zero. It is important to note the orthogonality and
complementarity between the fine-grained (model/input units) and the coarse-grained (gradient
aggregation) approaches. Being robust, as a model, either to adversarial examples or to internal
perturbations, does not necessarily imply robustness to adversarial gradients during training. Similarly,
being distributively trained with a robust aggregation scheme such as Krum does not necessarily
imply robustness to internal errors of the model or adversarial input perturbations that would occur
later during inference. For instance, the theory we develop in the present work is agnostic to the
model being trained or the technology of the hardware hosting it, as long as there are gradients to be
aggregated.
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