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Abstract

Many online communities present user-contributed responses such as reviews of
products and answers to questions. User-provided helpfulness votes can highlight
the most useful responses, but voting is a social process that can gain momentum
based on the popularity of responses and the polarity of existing votes. We propose
the Chinese Voting Process (CVP) which models the evolution of helpfulness votes
as a self-reinforcing process dependent on position and presentation biases. We
evaluate this model on Amazon product reviews and more than 80 StackExchange
forums, measuring the intrinsic quality of individual responses and behavioral
coefficients of different communities.

1 Introduction

With the expansion of online social platforms, user-generated content has become increasingly
influential. Customer reviews in e-commerce like Amazon are often more helpful than editorial
reviews [14], and question answers in Q&A forums such as StackOverflow and MathOverflow are
highly useful for coders and researchers [9, 18]. Due to the diversity and abundance of user content,
promoting better access to more useful information is critical for both users and service providers.
Helpfulness voting is a powerful means to evaluate the quality of user responses (i.e., reviews/answers)
by the wisdom of crowds. While these votes are generally valuable in aggregate, estimating the
true quality of the responses is difficult because users are heavily influenced by previous votes. We
propose a new model that is capable of learning the intrinsic quality of responses by considering their
social contexts and momentum.

Previous work in self-reinforcing social behaviors shows that although inherent quality is an important
factor in overall ranking, users are susceptible to position bias [12, 13]. Displaying items in an order
affects users: top-ranked items get more popularity, while low-ranked items remain in obscurity.
We find that sensitivity to orders also differs across communities: some value a range of opinions,
while others prefer a single authoritative answer. Summary information displayed together can
lead to presentation bias [19]. As the current voting scores are visibly presented with responses,
users inevitably perceive the score before reading the contents of responses. Such exposure could
immediately nudge user evaluations toward the majority opinion, making high-scored responses more
attractive. We also find that the relative length of each response affects the polarity of future votes.

Res Votes Diff Ratio Relative Quality
1 +++��� 0 0.5 quite negative
2 +�+�+� 0 0.5 moderately negative
3 �+�+�+ 0 0.5 moderately positive
4 ���+++ 0 0.5 quite positive

Table 1: Quality interpretation for each sequence of six votes.

Standard discrete models for self-re-
inforcing process include the Chinese
Restaurant Process and the Pólya urn
model. Since these models are exchange-
able, the order of events does not affect
the probability of a sequence. However,
Table 1 suggests how different contexts
of votes cause different impacts. While the four sequences have equal numbers of positive and
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negative votes in aggregate, the fourth votes in the first and last responses are given against a clear
majority opinion. Our model treats objection as a more challenging decision, thereby deserving
higher weight. In contrast, the middle two sequences receive alternating votes. As each vote is
a relatively weaker disagreement, the underlying quality is moderate compared to the other two
responses. Furthermore, if these are responses to one item, the order between them also matters. If
the initial three votes on the fourth response pushed its display position to the next page, for example,
it might not have a chance to get future votes, which recover its reputation.

The Chinese Voting Process (CVP) models generation of responses and votes, formalizing the evo-
lution of helpfulness under positional and presentational reinforcement. Whereas most previous work
on helpfulness prediction [7, 5, 8, 4, 11, 10, 15] has involved a single snapshot, the CVP estimates
intrinsic quality of responses solely from selection and voting trajectories over multiple snapshots.
The resulting model shows significant improvements in predictive probability for helpfulness votes,
especially in the critical early stages of a trajectory. We find that the CVP estimated intrinsic quality
ranks responses better than existing system rank, correlating orderly with the sentiment of comments
associated with each response. Finally, we qualitatively compare different characteristics of self-rein-
forcing behavior between communities using two learned coefficients: Trendiness and Conformity.
The two-dimensional embedding in Figure 1 characterizes different opinion dynamics from Judaism
to Javascript (in StackOverflow).

Figure 1: 2D Community embedding. Each of 83 communities is represented by two behavioral coefficients
(Trendiness, Conformity). Eleven clusters are grouped based on their common focus. The MEAN community is
synthesized by sampling 20 questions from every community (except Amazon due to the different user interface).

Related work. There is strong evidence that helpfulness voting is socially influenced. Helpfulness
ratings on Amazon product reviews differ significantly from independent human annotators [8]. Votes
are generally more positive, and the number of votes decreases exponentially based on displayed
page position. Review polarity is biased towards matching the consensus opinion [4]: when two
reviews contain essentially the same text but differ in star rating, the review closer to the consensus
star rating is considered more helpful. There is also evidence that users vote strategically to correct
perceived mismatches in review rank [16]. Many studies have attempted to predict helpfulness given
review-content features [7, 5, 11, 10, 15]. Each of these examples predicts helpfulness based on text,
star-ratings, sales, and badges, but only at a single snapshot. Our work differs in two ways. First, we
combine data on Amazon helpfulness votes from [16] with a much larger collection of helpfulness
votes from 82 StackExchange forums. Second, instead of considering text-based features (which we
hold out for evaluation) within a single snapshot, we attempt to predict the next vote at each stage
based on the previous voting trajectory over multiple snapshots without considering textual contents.

2 The Chinese Voting Process

Our goal is to model helpfulness voting as a two-phase self-reinforcing stochastic process. In the
selection phase, each user either selects an existing response based on their positions or writes a new
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response. The positional reinforcement is inspired by the Chinese Restaurant Process (CRP) and
Distance Dependent Chinese Restaurant Process (ddCRP). In the voting phase, when one response is
selected, the user chooses one of the two feedback options: a positive or negative vote based on the
intrinsic quality and the presentational factors. The presentational reinforcement is modeled by a
log-linear model with time-varying features based on the Pólya urn model. The CVP implements
the-rich-get-richer dynamics as an interplay of these two preferential reinforcements, learning latent
qualities of individual responses as inspired in Table 1. Specifically, each user at time t interested in
the item i follows the generative story in Table 2.

Generative process Sample parametrization (Amazon)

1. Evaluate j-th response: p(z(t)i = j|z(1:t�1)
i ;↵) / f

(t�1)
i (j)

(a) ‘Yes’: p(v(t)i = 1|✓) = logit

�1
(qij + g

(t�1)
i (j))

(b) ‘No’ : p(v(t)i = 0|✓) = 1� p(v

(t)
i = 1|✓)

2. Or write a new response: p(z(t)i = Ji + 1|z(1:t�1)
i ;↵) / ↵

(a) Sample qi(J+1) from N (0,�

2
).

f

(t)
i (j) =

⇣

1

1 + the-display-rank(t)i (j)

⌘⌧

g

(t)
i (j) = �r

(t)
ij + µs

(t)
ij + ⌫iu

(t)
ij

✓ = {{qij},�, µ, {⌫i}}

Ji = J

(t�1)
i (abbreviated notation)

Table 2: The generative story and the parametrization of the Chinese Voting Process (CVP).

2.1 Selection phase

The CRP [1, 2] is a self-reinforcing decision process over an infinite discrete set. For each item
(product/question) i, the first user writes a new response (review/answer). The t-th subsequent user
can choose an existing response j out of J(t�1)

i possible responses with probability proportional to
the number of votes n

(t�1)
j given to the response j by time t� 1, whereas the probability of writing a

new response J

(t�1)
i + 1 is proportional to a constant ↵. While the CRP models self-reinforcement —

each vote for a response makes that response more likely to be selected later — there is evidence
that the actual selection rate in an ordered list decays with display rank [6]. Since such rankings are
mechanism-specific and not always clearly known in advance, we need a more flexible model that
can specify various degrees of positional preference. The ddCRP [3] introduces a function f that
decays with respect to some distance measure. In our formulation, the distance function varies over
time and is further configurable with respect to the specific interface of service providers.

Specifically, the function f

(t)
i (j) in the CVP evaluates the popularity of the j-th response in the item i

at time t. Since we assume that popularity of responses is decided by their positional accessibility,
we can parametrize f to be inversely proportional to their display ranks. The exponent ⌧ determines
sensitivity to popularity in the selection phase by controlling the degree of harmonic penalization
over ranks. Larger ⌧ > 0 indicates that users are more sensitive to trendy responses displayed near
the top. If ⌧ < 0, users often select low-ranked responses over high-ranked ones for some reasons.1

Note that even if the user at time t does not vote on the j-th response, f(t)i (j) could be different from
f

(t�1)
i (j) in the CVP,2 whereas n

(t)
ij = n

(t�1)
ij in the CRP. Thus one can view the selection phase of the

CVP as a non-exchangeable extension of the CRP via a time-varying function f .

2.2 Voting phase

We next construct a self-reinforcing process for the inner voting phase. The Pólya urn model is
a self-reinforcing decision process over a finite discrete set, but because it is exchangeable, it is
unable to capture contextual information encoded in each a sequence of votes. We instead use
a log-linear formulation with the urn-based features, allowing other presentational features to be
flexibly incorporated based on the modeler’s observations.

Each response initially has x = x

(0) positive and y = y

(0) negative votes, which could be fractional
pseudo-votes. For each draw of a vote, we return w + 1 votes with the same polarity, thus self-
reinforcing when w > 0. The following Table 3 shows time-evolving positive/negative ratios
r

(t)
j = x

(t)
j /(x

(t)
j + y

(t)
j ) and s

(t)
j = y

(t)
j /(x

(t)
j + y

(t)
j ) of the first two responses: j 2 {1, 2} in Table 1 with

the corresponding ratio gain �

(t)
j = r

(t)
j � r

(t�1)
j (if v(t)j = 1 or +) or s(t)j � s

(t�1)
j (if v(t)j = 0 or �).

1This sometimes happens especially in the early stage when only a few responses exist.
2Say the rank of another response j

0 was lower than j’s at time t� 1. If t-th vote given to the response j

0

raises its rank higher than the rank of the response j, then f

(t)
i (j) < f

(t�1)
i (j) assuming ⌧ > 0.
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t or T v

(t)
1 r

(t)
1 s

(t)
1 �

(t)
1 q

T
1 v

(t)
2 r

(t)
2 s

(t)
2 �

(t)
2 q

T
2

0 1/2 1/2 1/2 1/2

1 + 2/3 1/3 0.167 � + 2/3 1/3 0.167 �
2 + 3/4 1/4 0.083 0.363 � 2/4 2/4 0.167 -0.363
3 + 4/5 1/5 0.050 0.574 + 3/5 2/5 0.100 0.004
4 � 4/6 2/6 0.133 0.237 � 3/6 3/6 0.100 -0.230
5 � 4/7 3/7 0.095 0.004 + 4/7 3/7 0.071 0.007
6 � 4/8 4/8 0.071 -0.175 � 4/8 4/8 0.071 -0.166

Table 3: Change of quality estimation qj over times for the first two example responses in Table 1 with the initial
pseudo-votes (x, y, w) = (1, 1, 1). The estimated quality at the first response sharply decreases when receiving
the first majority-against vote at t = 4. The first response ends up being more negative than the second, even if
they receive the same number of votes in aggregate. These non-exchangeable behaviors cannot be modeled with
a simple exchangeable process.

In this toy setting, the polarity of a vote to a response is an outcome of its intrinsic quality as well
as presentational factors: positive and negative votes. Thus we model each sequence of votes by
`2-regularized logistic regression with the latent intrinsic quality and the Pólya urn ratios.3

max

✓
log

T
Y

t=2

logit

�1�
q

T
j + �r

(t�1)
j + µs

(t�1)
j

�

� 1

2

k✓k22 where ✓ =

�

q

T
j ,�, µ

�

(1)

The {qTj } in the Table 3 shows the result from solving (1) up to T -th votes for each j 2 {1, 2}. The
initial vote given at t = 1 is disregarded in the training due to its arbitrariness from the uniform
prior (x0 = y0). Since it is quite possible to have only positive or only negative votes, Gaussian
regularization is necessary. Note that using the urn-based ratio features is essential to encode
contextual information. If we instead use raw count features (only the numerators of rj and sj), for
example in the first response, the estimated quality q

T
1 keeps increasing even after getting negative

votes from time 4 to 6. Log raw count features are unable to infer the negative quality.

In the first response, �(t)
1 shows the decreasing gain in positive ratios from t = 1 to 3 and in negative

ratios from t = 4 to 6, whereas it gains a relatively large momentum at the first negative vote when
t = 4. �(t)

2 converges to 0 in the 2nd response, implying that future votes have less effect than earlier
votes for alternating +/� votes. q

T
2 also converges to 0 as we expect neutral quality in the limit.

Overall the model is capable of learning intrinsic quality as desired in Table 1 where relative gains
can be further controlled by tuning the initial pseudo-votes (x, y).

In the real setting, the polarity score function g

(t)
i (j) in the CVP evaluates presentational factors of

the j-th response in the item i at time t. Because we adopt a log-linear formulation, one can easily
add additional information about responses. In addition to the positive ratio r

(t)
ij and the negative

ratio s

(t)
ij , g also contains a length feature u

(t)
ij (as given in Table 2), which is the relative length of the

response j against the average length of responses in the item i at particular time t. Users in some
items may prefer shorter responses than longer ones for brevity, whereas users in other items may
blindly believe that longer responses are more credible before reading their contents. The parameter
⌫i explains length-wise preferential idiosyncrasy as a per-item bias: ⌫i < 0 means a preference toward
the shorter responses. Note that g(t)i (j) could be different from g

(t�1)
i (j) even if the user at time t does

not choose to vote.4 All together, the voting phase of the CVP generates non-exchangeable votes.

3 Inference

Each phase of the CVP depends on the result of all previous stages, so decoupling these related
problems is crucial for efficient inference. We need to estimate community-level parameters, item-
level length preferences, and response-level intrinsic qualities. The graphical model of the CVP and
corresponding parameters to estimate are illustrated in Table 4. We further compute two community-
level behavioral coefficients: Trendiness and Conformity, which are useful summary statistics for
exploring different voting patterns and explaining macro characteristics across different communities.

3One might think (1) can be equivalently achievable with only two parameters because of r(t)j + s

(t)
j = 1 for

all t. However, such reparametrization adds inconsistent translations to q

T
j and makes it difficult to interpret

different inclinations between positive and negative votes for various communities.
4If a new response is written at time t, u(t)ij 6= u

(t�1)
ij as the new response changes the average length.
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Process

↵: hyper-parameter for response growth
�

2: hyper-parameter for quality variance
⌧ : community-level sensitivity to popularity
�: community-level preference for positive ratio
µ: community-level preference for negative ratio
⌫i: item-level preference for response length
qij : response-level hidden intrinsic quality
m: # of items (e.g., products/questions)
Ji: # of responses of item i (e.g., reviews/answers)

Table 4: Graphical model and parameters for the CVP. Only three time steps are unrolled for visualization.

Parameter inference. The goal is to infer parameters ✓ = {{qij},�, µ, {⌫i}}. We sometimes use f

and g instead to compactly indicate parameters associated to each function. The likelihood of one
CVP step in the item i at time t is L

(t)
i (⌧,✓;↵,�) =

n

↵

↵+
PJ

(t�1)
i

j=1 f
(t�1)
i (j)

N (q

i,z
(t)
i

; 0,�

2
)

o [z
(t)
i =J

(t�1)
i +1]n f

(t�1)
i (z

(t)
i )

↵+
PJ

(t�1)
i

j=1 f
(t�1)
i (j)

p(v

(t)
i |q

i,z
(t)
i

, g

(t�1)
i (j))

o [z
(t)
i J

(t�1)
i ]

where the two terms correspond to writing a new response and selecting an existing response to
vote. The fractions in each term respectively indicate the probability of writing a new response and
choosing existing responses in the selection phase. The other two probability expression in each term
describe quality sampling from a normal distribution and the logistic regression in the voting phase.

It is important to note that our setting differs from many CRP-based models. The CRP is typically
used to represent a non-parametric prior over the choice of latent cluster assignments that must
themselves be inferred from noisy observations. In our case, the result of each choice is directly
observable because we have the complete trajectory of helpfulness votes. As a result, we only
need to infer the continuous parameters of the process, and not combinatorial configurations of
discrete variables. Since we know the complete trajectory where the rank inside the function f is a
part of the true observations, we can view each vote as an independent sample. Denoting the last
timestamp of the item i by Ti, the log-likelihood becomes `(⌧,✓;↵,�) =

Pm
i=1

PTi
t=1 logL

(t)
i and is

further separated into two pieces:

`v(✓;�) =
m
X

i=1

Ti
X

t=1

n

[write] · logN (q

i,z
(t)
i

; 0,�

2
) + [choose] · log p(v(t)i |q

i,z
(t)
i

, g

(t�1)
i (j))

o

, (2)

`s(⌧ ;↵) =

m
X

i=1

Ti
X

t=1

n

[write] · log ↵

↵+

PJ
(t�1)
i
j=1 f

(t�1)
i (j)

+ [choose] · log f

(t�1)
i (z

(t)
i )

↵+

PJ
(t�1)
i
j=1 f

(t�1)
i (j)

o

.

Inferring a whole trajectory based only on the final snapshots would likely be intractable for a
non-exchangeable model. Due to the continuous interaction between f and g for every time step,
small mis-predictions in the earlier stages will cause entirely different configurations. Moreover the
rank function inside f is in many cases site-specific.5 It is therefore vital to observe all trajectories
of random variables {z(t)i , v

(t)
i }: decoupling f and g reduces the inference problem into estimating

parameters separately for the selection phase and the voting phase. Maximizing `v can be efficiently
solved by `2-regularized logistic regression as demonstrated for (1). If the hyper-parameter ↵ is fixed,
maximizing `s becomes a convex optimization because ⌧ appears in both the numerator and the
denominator. Since the gradient for each parameter in ✓ is obvious, we only include the gradient of
`

(t)
s,i for the particular item i at time t with respect to ⌧ . Then @`s

@⌧ =

Pm
i=1

PTi
t=1 @`

(t)
s,i/@⌧ .

@`

(t)
s,i

@⌧

=

1

⌧

(

[z

(t)
i  J

(t�1)
i ] · f

(t�1)
i (z

(t)
i ) log f

(t�1)
i (z

(t)
i )

f

(t�1)
i (z

(t)
i )

�
PJ

(t�1)
i
j=1 f

(t�1)
i (j) log f

(t�1)
if (j)

↵+

PJ
(t�1)
i
j=1 f

(t�1)
i (j)

)

(3)

5We generally know that Amazon decides the display order by the portion of positive votes and the total
number of votes on each response, but the relative weights between them are not known. We do not know how
StackExchange forums break ties, which affects highly in the early stages of voting.
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Community Selection Voting Residual Bumpiness
CRP CVP qij � ⌫i qij ,� qij , ⌫i �, ⌫i Full Rank Qual Rank Qual

SOF(22925) 2.152 1.989 .107 .103 .108 .100 .106 .100 .096 .005 .003 .080 .038
math(6245) 1.841 1.876 .071 .064 .067 .062 .066 .060 .059 .014 .008 .280 .139
english(5242) 1.969 1.924 .160 .146 .152 .141 .147 .137 .135 .018 .007 .285 .149
mathOF(2255) 1.992 1.910 .049 .046 .049 .045 .047 .046 .045 .009 .007 .185 .119
physics(1288) 1.824 1.801 .174 .155 .166 .150 .156 .146 .142 .032 .014 .497 .273
stats(598) 1.889 1.822 .051 .044 .048 .043 .046 .042 .042 .030 .019 .613 .347
judaism(504) 2.039 1.859 .135 .124 .132 .121 .125 .118 .116 .046 .018 .875 .403
amazon(363) 2.597 2.261 .266 .270 .262 .254 .243 .253 .240 .023 .016 .392 .345
meta.SOF(294) 1.411 1.575 .261 .241 .270 .229 .243 .232 .225 .018 .013 .281 .255
cstheory(279) 1.893 1.795 .052 .040 .053 .039 .049 .039 .038 .032 .029 .485 .553
cs(123) 1.825 1.780 .128 .100 .118 .099 .113 .097 .096 .069 .040 .725 .673
linguistics(107) 1.993 1.789 .133 .127 .130 .122 .123 .120 .116 .074 .038 .778 .656
AVERAGE 2.050 1.945 .109 .103 .108 .099 .105 .098 .095 .011 .006 .186 .101

Table 5: Predictive analysis on the first 50 votes: In the selection phase, the CVP shows better negative
log-likelihood in almost all forums. In the voting phase, the full model shows better negative log-likelihood
than all subsets of features. Quality analysis at the final snapshot: Smaller residuals and bumpiness show that
the order based on the estimated quality qij more coherently correlates with the average sentiments of the
associated comments than the order by display rank. (SOF=StackOverflow, OF=Overflow, rest=Exchange, Blue:
p  0.001, Green: p  0.01, Red: p  0.05)

Behavioral coefficients. To succinctly measure overall voting behaviors across different communi-
ties, we propose two community-level coefficients. Trendiness indicates the sensitivity to positional
popularity in the selection phase. While the community-level ⌧ parameter renders Trendiness simply
to avoid overly-complicated models, one can easily extend the CVP to have per-item ⌧i to better
fit the data. In that case, Trendiness would be a summary statistics for {⌧i}. Conformity captures
users’ receptiveness to prevailing polarity in the voting phase. To count every single vote, we define
Conformity to be a geometric mean of odds ratios between majority-following votes and majority-
disagreeing votes. Let Vi be the set of time steps when users vote rather than writing responses in the
item i. Say n is the total number of votes across all items in the target community. Then Conformity
is defined as

 =

(

m
Y

i=1

Y

t2Vi

✓

P (v

(t+1)
i = 1|qt

i,z
(t+1)
i

,�

t
, µ

t
, ⌫

t
i )

P (v

(t+1)
i = 0|qt

i,z
(t+1)
i

,�

t
, µ

t
, ⌫

t
i )

◆h
(t)
i

)1/n

where h

(t)
i =

(

1 (n

+(t)
ij � n

�(t)
ij )

�1 (n

+(t)
ij < n

�(t)
ij )

.

To compute Conformity , we need to learn ✓t
= {qtij ,�t

, µ

t
, ⌫

t
i} for each t, which is a set of

parameters learned on the data only up to the time t. This is because the user at time t cannot see
any future which will be given later than the time t. Note that ✓t+1 can be efficiently learned by
warm-starting at ✓t. In addition, while positive votes are mostly dominant in the end, the dominant
mood up to time t could be negative, exactly when the user at time t+ 1 tries to vote. In this case,
h

(t)
i becomes �1, inverting the fraction to be the ratio of following the majority against the minority.

By summarizing learned parameters in terms of two coefficients (⌧,), we can compare different
selection/voting behaviors for various communities.

4 Experiments

We evaluate the CVP on product reviews from Amazon and 82 issue-specific forums from the
StackExchange network. The Amazon dataset [16] originally consisted of 595 products with daily
snapshots of writing/voting trajectories from Oct 2012 to Mar 2013. After eliminating duplicate
products6 and products with fewer than five reviews or fragmented trajectories,7 363 products are left.
For the StackExchange dataset8, we filter out questions from each community with fewer than five
answers besides the answer chosen by the question owner.9 We drop communities with fewer than
100 questions after pre-processing. Many of these are “Meta” forums where users discuss policies
and logistics for their original forums.

6Different seasons of the same TV shows have different ASIN codes but share the same reviews.
7If the number of total votes between the last snapshot of the early fragment and the first snapshot of the later

fragment is less than 3, we fill in the missing information simply with the last snapshot of the earlier fragment.
8Dataset and statistics are available at https://archive.org/details/stackexchange.
9The answer selected by the question owner is displayed first regardless of voting scores.
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Figure 2: Comment and likelihood analysis on the StackOverflow forum. The left panels show that responses
with higher ranks tend to have more comments (top) and more positive sentiments (bottom). The middle
panels show responses have more comments at both high and low intrinsic quality qij (top). The corresponding
sentiment correlates more cohesively with the quality score (bottom). Each blue dot is approximately an average
over 1k responses, and we parse 337k comments given on 104k responses in total. The right panels show
predictive power for the selection phase (top) and the voting phase (bottom) up to t < 50 (lower is better).

Predictive analysis. In each community, our prediction task is to learn the model up to time t and
predict the action at t + 1. We align all items at their initial time steps and compute the average
negative log-likelihood of the next actions based on the current model. Since the complete trajectory
enables us to separate the selection and voting phases in inference, we also measure the predictive
power of these two tasks separately against their own baselines. For the selection phase, the baseline
is the CRP, which selects responses proportional to the number of accumulated votes or writes a
new response with the probability proportional to ↵.10 When t < 50, as shown in the first column of
Table 5, the CVP significantly outperforms the CRP based on paired t-tests (two-tailed). Using the
function f based on display rank and Trendiness parameter ⌧ is indeed a more precise representation
of positional accessibility. Especially in the early stages, users often select responses displayed at
lower ranks with fewer votes. While the CRP has no ability to give high scores in these cases, the
CVP properly models it by decreasing ⌧ . The comparative advantage of the CVP declines as more
votes become available and the correlation between display rank and the number of votes increases.
For items with t � 50, there is no significant difference between the two models as exemplified in the
third column of Figure 2. These results are coherent across other communities (p > 0.07).

Improving predictive power on the voting phase is difficult because positive votes dominate in every
community. We compare the fully parametrized model to simpler partial models in which certain
parameters are set to zero. For example, a model with all parameters but � knocked out is comparable
to a plain Pólya Urn. As illustrated in the second column of Table 5, we verify that every sub-model
is significantly different from the full model in all major communities based on one-way ANOVA
test, implying that each feature adds distinctive and meaningful information. Having the item-specific
length bias ⌫i provides significant improvements as well as having intrinsic quality qij and current
opinion counts �. While we omit the log-likelihood results with t � 50, all model better predicts true
polarity when t � 50, because the log-linear model obtains a more robust estimate of community-level
parameters as the model acquires more training samples.

Quality analysis. The primary advantage of the CVP is its ability to learn “intrinsic quality” for
each response that filters out noise from self-reinforcing voting processes. We validate these scores
by comparing them to another source of user feedback: both StackExchange and Amazon allow
users to attach comments to responses along with votes. For each response, we record the number
of comments and the average sentiment of those comments as estimated by [17]. As a baseline, we

10We fix ↵ to 0.5 after searching over a wide range of values.
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also calculate the final display rank of each response, which we convert to a z-score to make it more
comparable to the quality scores qij . After sorting responses based on display rank and quality rank,
we measure the association between the two rankings and comment sentiment with linear regression.
Results are shown for StackOverflow in Figure 2. As expected, highly-ranked responses have more
comments, but we also find that there are more comments for both high and low values of intrinsic
quality. Both better display rank and higher quality score qij are clearly associated with more positive
comments (slope 2 [0.47, 0.64]), but the residuals of quality rank 0.012 are on average less than
the half the residuals of display rank 0.028. In addition, we also calculate the “bumpiness” of these
plots by computing the mean variation of two consecutive slopes between each adjacent pair of data
points. Quality rank reduces bumpiness of display rank from 0.391 to 0.226 in average, implying the
estimated intrinsic quality yields locally consistent ranking as well as globally consistent.11

Figure 3: Sub-community embedding for StackOverflow.

Community analysis. The 2D embedding
in Figure 1 shows that we can compare and
contrast the different evaluation cultures of
communities using two inferred behavioral
coefficients: Trendiness ⌧ and Conformity .
Communities are sized according to the num-
ber of items and colored based on a manual
clustering. Related communities collocate
in the same neighborhood. Religion, schol-
arship, and meta-discussions cluster towards
the bottom left, where users are interested
in many different opinions, and are happy
to disagree with each other. Going from left
to right, communities become more trendy:
users in trendier communities tend to select
and vote mostly on already highly-ranked
responses. Going from bottom to top, users
become increasingly likely to conform to the
majority opinion on any given response. By comparing related communities we can observe that
characteristics of user communities determine voting behavior more than technical similarity. Highly
theoretical and abstract communities (cstheory) have low Trendiness but high Conformity. More
applied, but still graduate-level, communities in similar fields (cs, mathoverflow, stats) show less
Conformity but greater Trendiness. Finally, more practical homework-oriented forums (physics,
math) are even more trendy. In contrast, users in english are trendy and debatable. Users in Amazon
are most sensitive to trendy reviews and least afraid of voicing minority opinion.

StackOverflow is by far the largest community, and it is reasonable to wonder whether the Trendiness
parameter is simply a proxy for size. When we subdivide StackOverflow by programming languages
however (see Figure 3), individual community averages can be distinguished, but they all remain in
the same region. Javascript programmers are more satisfied with trendy responses than those using
c/c++. Mobile developers tend to be more conformist, while Perl hackers are more likely to argue.

5 Conclusions

Helpfulness voting is a powerful tool to evaluate user-generated responses such as product reviews
and question answers. However such votes can be socially reinforced by positional accessibility and
existing evaluations by other users. In contrast to many exchangeable random processes, the CVP
takes into account sequences of votes, assigning different weights based on the context that each vote
was cast. Instead of trying to model the response ordering function f , which is mechanism-specific
and often changes based on service providers’ strategies, we leverage the fully observed trajectories of
votes, estimating the hidden intrinsic quality of each response and inferring two behavioral coefficients
for community-level exploration. The proposed log-linear urn model is capable of generating non-
exchangeable votes with great scalability to incorporate other factors such as length bias or other
textual features. As we are more able to observe social interactions as they are occurring and not just
summarized after the fact, we will increasingly be able to use models beyond exchangeability.

11All numbers and p-values in paragraphs are weighted averages on all 83 communities, whereas Table 5 only
includes results for the major communities and their own weighted averages due to space limits.
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