
“Short-Dot”: Computing Large Linear Transforms
Distributedly Using Coded Short Dot Products

Sanghamitra Dutta
Carnegie Mellon University
sanghamd@andrew.cmu.edu

Viveck Cadambe
Pennsylvania State University
viveck@engr.psu.edu

Pulkit Grover
Carnegie Mellon University
pgrover@andrew.cmu.edu

Abstract

Faced with saturation of Moore’s law and increasing size and dimension of data,
system designers have increasingly resorted to parallel and distributed computing
to reduce computation time of machine-learning algorithms. However, distributed
computing is often bottle necked by a small fraction of slow processors called
“stragglers” that reduce the speed of computation because the fusion node has
to wait for all processors to complete their processing. To combat the effect
of stragglers, recent literature proposes introducing redundancy in computations
across processors, e.g., using repetition-based strategies or erasure codes. The
fusion node can exploit this redundancy by completing the computation using
outputs from only a subset of the processors, ignoring the stragglers. In this paper,
we propose a novel technique – that we call “Short-Dot” – to introduce redundant
computations in a coding theory inspired fashion, for computing linear transforms
of long vectors. Instead of computing long dot products as required in the original
linear transform, we construct a larger number of redundant and short dot products
that can be computed more efficiently at individual processors. Further, only a
subset of these short dot products are required at the fusion node to finish the
computation successfully. We demonstrate through probabilistic analysis as well
as experiments on computing clusters that Short-Dot offers significant speed-up
compared to existing techniques. We also derive trade-offs between the length of
the dot-products and the resilience to stragglers (number of processors required to
finish), for any such strategy and compare it to that achieved by our strategy.

1 Introduction

This work proposes a coding-theory inspired computation technique for speeding up computing
linear transforms of high-dimensional data by distributing it across multiple processing units that
compute shorter dot products. Our main focus is on addressing the “straggler effect,” i.e., the problem
of delays caused by a few slow processors that bottleneck the entire computation. To address this
problem, we provide techniques (building on [1] [2] [3] [4] [5]) that introduce redundancy in the
computation by designing a novel error-correction mechanism that allows the size of individual dot
products computed at each processor to be shorter than the length of the input.

The problem of computing linear transforms of high-dimensional vectors is “the" critical step [6] in
several machine learning and signal processing applications. Dimensionality reduction techniques
such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), taking random
projections, require the computation of short and fat linear transforms on high-dimensional data.
Linear transforms are the building blocks of solutions to various machine learning problems, e.g.,
regression and classification etc., and are also used in acquiring and pre-processing the data through
Fourier transforms, wavelet transforms, filtering, etc. Fast and reliable computation of linear trans-
forms are thus a necessity for low-latency inference [6]. Due to saturation of Moore’s law, increasing

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

speed of computing in a single processor is becoming difficult, forcing practitioners to adopt parallel
processing to speed up computing for ever increasing data dimensions and sizes.

Classical approaches of computing linear transforms across parallel processors, e.g., Block-Striped
Decomposition [7], Fox’s method [8, 7], and Cannon’s method [7], rely on dividing the computational
task equally among all available processors1 without any redundant computation. The fusion node
collects the outputs from each processors to complete the computation and thus has to wait for
all the processors to finish. In almost all distributed systems, a few slow or faulty processors –
called “stragglers”[11] – are observed to delay the entire computation. This unpredictable latency in
distributed systems is attributed to factors such as network latency, shared resources, maintenance
activities, and power limitations. In order to combat with stragglers, cloud computing frameworks
like Hadoop [12] employ various straggler detection techniques and usually reset the task allotted
to stragglers. Forward error-correction techniques offer an alternative approach to deal with this
“straggler effect” by introducing redundancy in the computational tasks across different processors.
The fusion node now requires outputs from only a subset of all the processors to successfully finish.
In this context, the use of preliminary erasure codes dates back to the ideas of algorithmic fault
tolerance [13] [14]. Recently optimized Repetition and Maximum Distance Separable (MDS) [19]
codes have been explored [2] [3] [1] [16] to speed up computations.

We consider the problem of computing Ax where A(M×N) is a given matrix and x(N×1) is a vector
that is input to the computation (M � N). In contrast with [1], which also uses codes to compute
linear transforms in parallel, we allow the size of individual dot products computed at each processor
to be smaller than N , the length of the input. Why might one be interested in computing short
dot products while performing an overall large linear transform? This is because for distributed
digital processors, the computation time is reduced with the number of operations (length of the
dot-products). In Sections 4 and 5, we show that the computation speed-up can be increased beyond
that obtained in [1]. Another interesting example comes from recent work on designing processing
units that exclusively compute dot-products using analog components [17, 18]. These devices are
prone to errors and increased delays in convergence when designed for larger dot products.

To summarize, our main contributions are:

1. To compute Ax for a given matrix A(M×N), we instead compute Fx where we construct F(P×N)

(total no. of processors P > Required no. of dot-products M) such that each N -length row of F has
at most N(P −K + M)/P non-zero elements. Because the locations of zeros in a row of F are
known by design, this reduces the complexity of computing dot-products of rows of F with x. Here
K parameterizes the resilience to stragglers: any K of the P dot products of rows of F with x are
sufficient to recover Ax, i.e., any K rows of F can be linearly combined to generate the rows of A.
2. We provide fundamental limits on the trade-off between the length of the dot-products and the
straggler resilience (number of processors to wait for) for any such strategy in Section 3. This
suggests a lower bound on the length of task allotted per processor. However, we believe that these
limits are loose and point to an interesting direction for future work.
3. Assuming exponential tails of service-times at each server (used in [1]), we derive the expected
computation time required by our strategy and compare it to uncoded parallel processing, repetition
strategy and MDS codes [19] (see Fig. 2). Short-Dot offers speed-up by a factor of Ω(log(P)) over
uncoded, parallel processing and repetition, and nearly by a factor of Ω(PM) compared to MDS
codes when M is linear in P . The strategy out-performs repetition or MDS codes by a factor of
Ω
(

P
M log(P/M)

)
when M is sub-linear in P .

4. We provide experimental results showing that Short-Dot is faster than existing strategies.

For the rest of the paper, we define the sparsity of a vector u ∈ RN as the number of nonzero
elements in the vector, i.e., ‖u‖0 =

∑N
j=1 I(uj 6= 0). We also assume that P divides N (P � N).

Comparison with existing strategies: Consider the problem of computing a single dot product of
an input vector x ∈ RN with a pre-specified vector a ∈ RN . By an “uncoded” parallel processing
strategy (which includes Block Striped Decomposition [7]), we mean a strategy that does not use
redundancy to overcome delays caused by stragglers. One uncoded strategy is to partition the dot
product into P smaller dot products, where P is the number of available processors. E.g. a can

1Strassen’s algorithm [9] and its generalizations offer a recursive approach to faster matrix multiplications
over multiple processors, but they are often not preferred because of their high communication cost [10].

2

Figure 1: A dot-product of length N = 12 is being computed parallely using P = 6 processors.
(Left) Uncoded Parallel Processing - Divide into P parts, (Right) Repetition with block partitioning.

be divided into P parts – constructing P short vectors of sparsity N/P – with each vector stored
in a different processor (as shown in Fig. 1 left). Only the nonzero values of the vector need to be
stored since the locations of the nonzero values is known apriori at every node. One might expect
the computation time for each processor to reduce by a factor of P . However, now the fusion node
has to wait for all the P processors to finish their computation, and the stragglers can now delay the
entire computation. Can we construct P vectors such that dot products of a subset of them with x
are sufficient to compute 〈a,x〉? A simple coded strategy is Repetition with block partitioning i.e.,
constructing L vectors of sparsity N/L by partitioning the vector of length N into L parts (L < P),
and repeating the L vectors P/L times so as to obtain P vectors of sparsity N/L as shown in Fig. 1
(right). For each of the L parts of the vector, the fusion node only needs the output of one processor
among all its repetitions. Instead of a single dot-product, if one requires the dot-product of x with M
vectors {a1, . . . ,aM}, one can simply repeat the aforementioned strategy M times.

For multiple dot-products, an alternative repetition-based strategy is to compute M dot products
P/M times in parallel at different processors. Now we only have to wait for at least one processor
corresponding to each of the M vectors to finish. Improving upon repetition, it is shown in [1]
that an (P,M)-MDS code allows constructing P coded vectors such that any M of P dot-products
can be used to reconstruct all the M original vectors (see Fig. 2b). This strategy is shown, both
experimentally and theoretically, to perform better than repetition and uncoded strategies.

(a) Uncoded Parallel Processing (b) Using MDS codes (c) Using Short-Dot

Figure 2: Different strategies of parallel processing: Here M = 3 dot-products of length N = 12 are
being computed using P = 6 processors.

Can we go beyond MDS codes? MDS codes-based strategies require N -length dot-products to be
computed on each processor. Short-Dot instead constructs P vectors of sparsity s (less than N), such
that the dot product of x with any K (≥M) out of these P short vectors is sufficient to compute the
dot-product of x with all the M given vectors (see Fig. 2c). Compared to MDS Codes, Short-Dot
waits for some more processors (since K ≥M), but each processor computes a shorter dot product.
We also propose Short-MDS, an extension of the MDS codes-based strategy in [1] to create short
dot-products of length s, through block partitioning, and compare it with Short-Dot. In regimes
where N

s is an integer, Short-MDS may be viewed as a special case of Short-Dot. But when N
s is not

an integer, Short-MDS has to wait for more processors in worst case than Short-Dot for the same
sparsity s, as discussed in Remark 1 in Section 2.

2 Our coded parallelization strategy: Short-Dot

In this section, we provide our strategy of computing the linear transform Ax where x ∈ RN
is the input vector and A(M×N) = [a1,a2, . . . ,aM]T is a given matrix. Short-Dot constructs a

3

Figure 3: Short-Dot: Distributes short dot-products over P parallel processors, such that outputs from
any K out of P processors are sufficient to compute successfully.

P × N matrix F = [f1,f2, . . . ,fP]T such that M predetermined linear combinations of any K
rows of F are sufficient to generate each of {aT1 , . . . ,aTM}, and any row of F has sparsity at most
s = N

P (P −K + M). Each sparse row of F (say fTi) is sent to the i-th processor (i = 1, . . . , P)
and dot-products of x with all sparse rows are computed in parallel. Let Si denote the support
(set of non-zero indices) of fi. Thus, for any unknown vector x, short dot products of length
|Si| ≤ s = N

P (P −K +M) are computed on each processor. Since the linear combination of any
K rows of F can generate the rows of A, i.e., {aT1 ,aT2 , . . . ,aTM}, the dot-product from the earliest
K out of P processors can be linearly combined to obtain the linear transform Ax. Before formally
stating our algorithm, we first provide an insight into why such a matrix F exists in the following
theorem, and develop an intuition on the construction strategy.

Theorem 1 Given row vectors {aT1 ,aT2 , . . . ,aTM}, there exists a P ×N matrix F such that a linear
combination of any K(> M) rows of the matrix is sufficient to generate the row vectors and each
row of F has sparsity at most s = N

P (P −K +M), provided P divides N .

Proof: We may append (K − M) rows to A = [a1,a2, . . . ,aM]T , to form a K × N matrix
Ã = [a1,a2, . . . ,aM , z1, . . . ,zK−M]T . The precise choice of these additional vectors will be made
explicit later. Next, we choose B, a P ×K matrix such that any square sub-matrix of B is invertible.
E.g., A Vandermonde or Cauchy Matrix, or a matrix with i.i.d. Gaussian entries can be shown to
satisfy this property with probability 1. The following lemma shows that any K rows of the matrix
BÃ are sufficient to generate any row of Ã, including {aT1 ,aT2 , . . . ,aTM}:

Lemma 1 Let F = BÃ where Ã is a K ×N matrix and B is any (P ×K) matrix such that every
square sub-matrix is invertible. Then, any K rows of F can be linearly combined to generate any
row of Ã.

Proof: Choose an arbitrary index set χ ⊂ {1, 2, . . . , P} such that |χ| = K. Let F χ be the sub-matrix
formed by chosen K rows of F indexed by χ. Then, F χ = BχÃ. Now, Bχ is a K ×K sub-matrix
of B, and is thus invertible. Thus, Ã = (Bχ)−1F χ. The i-th row of Ã is [i-th Row of (Bχ)−1]F χ

for i = 1, 2, . . . ,K. Thus, each row of Ã is generated by the chosen K rows of F . �

In the next lemma, we show how the row sparsity of F can be constrained to be at most NP (P−K+M)
by appropriately choosing the appended vectors z1, . . . ,zK−M .

Lemma 2 Given an M ×N matrix A = [a1, . . . ,aM]T , let Ã = [a1, . . . ,aM , z1, . . . ,zK−M]T

be a K ×N matrix formed by appending K −M row vectors to A. Also let B be a P ×K matrix
such that every square matrix is invertible. Then there exists a choice of the appended vectors
z1, . . . ,zK−M such that each row of F = BÃ has sparsity at most s = N

P (P −K +M).

Proof: We select a sparsity pattern that we want to enforce on F and then show that there exists a
choice of the appended vectors z1, . . . ,zK−M such that the pattern can be enforced.
Sparsity Pattern enforced on F : This is illustrated in Fig. 4. First, we construct a P × P “unit
block” with a cyclic structure of nonzero entries, where (K −M) zeros in each row and column
are arranged as shown in Fig. 4. Each row and column have at most sc = P −K + M non-zero
entries. This unit block is replicated horizontally N/P times to form an P ×N matrix with at most

4

sc non-zero entries in each column, and and at most s = Nsr/P non-zero entries in each row. We
now show how choice of z1, . . . ,zK−M can enforce this pattern on F .

Figure 4: Sparsity pattern of F : (Left) Unit Block (P × P); (Right) Unit Block concatenated N/P
times to form N × P matrix F with row sparsity at most s.

From F = BÃ, the j-th column of F can be written as, Fj = BÃj . Each column of F has at
least K −M zeros at locations indexed by U ⊂ {1, 2, . . . , P}. Let BU denote a ((K −M)×K)

sub-matrix of B consisting of the rows of B indexed by U . Thus, BUÃj = [0](K−M)×1. Divide
Ãj into two portions of lengths M and K −M as follows:
Ãj = [AT

j | zT]T = [a1(j) a2(j) . . . aM (j) z1(j) . . . zK−M (j)]T

Here Aj = [a1(j) a2(j) . . . aM (j)]T is actually the j-th column of given matrix A and z =
[z1(j), . . . zK−M (j)]T depends on the choice of the appended vectors. Thus,

BU
cols 1:MAj + BU

cols M+1:K z = [0]K−M×1 ⇒ BU
cols M+1:K z = −BU

cols 1:M [Aj]

⇒ [z] = −(BU
cols M+1:K)−1 BU

cols 1:M [Aj] (1)

where the last step uses the fact that [BU
cols M+1:K] is invertible because it is a (K −M)× (K −M)

square sub-matrix of B. This explicitly provides the vector z which completes the j-th column of Ã.
The other columns of Ã can be completed similarly, proving the lemma. �
From Lemmas 1 and 2, for a given M ×N matrix A, there always exists a P ×N matrix F such
that a linear combination of any K columns of F is sufficient to generate our given vectors and each
row of F has sparsity at most s = N

P (P −K +M). This proves the theorem. �
With this insight in mind, we now formally state our computation strategy:

Algorithm 1 Short-Dot

[A] Pre-Processing Step: Encode F (Performed Offline)
Given: AM×N = [a1, . . . ,aM]T = [A1,A2, . . . ,AN], parameter K,MatrixBP×K

1: For j = 1 to N do
2: Set U ← ({(j − 1), . . . , (j +K −M − 1)} mod P) + 1
3: B The set of (K −M) indices that are 0 for the j-th column of F
4: Set BU ← Rows of B indexed by U
5: Set [z] = −(BU

cols M+1:K)−1 BU
cols 1:M [Aj] B z(K−M)×1 is a row vector.

6: Set Fj = B[AT
j |zT]T B Fj is a column vector (j-th col of F)

Encoded Output: FP×N = [f1f2 . . .fP]T B Row representation of matrix F
7: For i = 1 to P do
8: Store Si ← Support(fi) B Indices of non-zero entries in the i-th row of F
9: Send fSi

i to i-th processor B i-th row of F sent to i-th processor
[B] Online computations
External Input : x
Resources: P parallel processors (P > M)
[B1] Parallelization Strategy: Divide task among parallel processors:

1: For i = 1 to P do
2: Send xSi to the i-th processor
3: Compute at i-th processor: 〈fSi

i ,xSi〉 B uS denotes only the rows of vector u indexed by S
Output: 〈fSi

i ,xSi〉 from K earliest processors

5

[B2] Fusion Node: Decode the dot-products from the processor outputs:
1: Set V ← Indices of the K processors that finished first
2: Set BV ← Rows of B indexed by V
3: Set vK×1 ← [〈fSi

i ,xSi〉, ∀ i ∈ V] B Col Vector of outputs from first K processors
4: Set Ax = [〈a1,x〉, . . . , 〈aM ,x〉]T ← [(BV)−1]rows 1:Mv
5: Output: 〈x,a1〉, . . . , 〈x,aM 〉

Table 1: Trade-off between the length of the dot-products and parameter K for different strategies

Strategy Length Parameter K

Repetition N P −
⌊
P
M

⌋
+ 1

MDS N M
Short-Dot s P −

⌊
Ps
N

⌋
+M

Strategy Length Parameter K

Repetition with
block partition

s P −
⌊

P
MdN/se

⌋
+ 1

Short-MDS s P −
⌊

P
dN/se

⌋
+M

Remark 1: Short-MDS - a special case of Short-Dot An extension of the MDS codes-based
strategy proposed in [1], that we call Short-MDS can be designed to achieve row-sparsity s. First
block-partition the matrix of N columns, into dN/se sub-matrices of size M × s, and also divide
the total processors P equally into dN/se parts. Now, each sub-matrix can be encoded using
a (P
dN/se ,M) MDS code. In the worst case, including all integer effects, this strategy requires

K = P −
⌊

P
dN/se

⌋
+M processors to finish. In comparison, Short-Dot requiresK = P −

⌊
Ps
N

⌋
+M

processors to finish. In the regime where, s exactly divides N , Short-MDS can be viewed as a special
case of Short-Dot, as both the expressions match. However, in the regime where s does not exactly
divide N , Short-MDS requires more processors to finish in the worst case than Short-Dot. Short-Dot
is a generalized framework that can achieve a wider variety of pre-specified sparsity patterns as
required by the application. In Table 1, we compare the lengths of the dot-products and straggler
resilience K, i.e., the number of processors to wait for in worst case, for different strategies.

3 Limits on trade-off between the length of dot-products and parameter K

Theorem 2 Let AM×N be any matrix such that each column has at least one non-zero element. If
the linear combination of any K rows of F(P×N) can generate M rows of AM×N , then the average
sparsity s of each row of F(P×N) must satisfy s ≥ N

(
1− K

P

)
+ N

P .

Proof: We claim that K is strictly greater than the maximum number of zeros that can occur
in any column of the matrix F . If not, suppose the j-th column of F has more than K zeros.
Then there exists a linear combination of K rows of F that will always have 0 at the j-th column
index and it is not possible to generate any row of the given matrix A. Thus, K is no less than
1 +Max No. of 0s in any column ofF . Since, maximum value is always greater than average,

K ≥ 1 +Avg. No. of 0s in any column ofF ≥ 1 +
(N − s)P

N
. (2)

A slight re-arrangement establishes the aforementioned lower bound. �
Short-Dot achieves a row-sparsity of at most s = N

(
1− K

P

)
+ NM

P while the lower bound for any
such strategy is s ≥ N

(
1− K

P

)
+ N

P . Notice that the bounds only differ in the second term. We
believe that the difference in the bounds arises due to the looseness of the fundamental limit: our
technique is based on derivation for M = 1 (bound is tight), and could be tightened for M > 1.

4 Analysis of expected computation time for exponential tail models

We now provide a probabilistic analysis of the computational time required by Short-Dot and compare
it with uncoded parallel processing, repetition and MDS codes as shown in Fig. 5. Table 2 shows
the order-sense expected computation time in the regimes where M is linear and sub-linear in P .
A detailed analysis is provided in the supplement. Assume that the time required by a processor to

6

Figure 5: Expected computation time: Short-Dot is faster than MDS when M � P and Uncoded
when M ≈ P , and is universally faster over the entire range of M . For the choice of straggling
parameter, Repetition is slowest. When M does not exactly divide P , the distribution of computation
time for repetition and uncoded strategies is the maximum of non-identical but independent random
variables, which produce the ripples in these curves (see supplement for details).

compute a single dot-product follows an exponential distribution and is independent of the other
processors, as described in [1]. Let the time required to compute a single dot-product of length N
be distributed as: Pr(TN ≤ t) = 1 − exp

(
−µ

(
t
N − 1

))
∀ t ≥ N. Here, µ is the “straggling

parameter” that determines the unpredictable latency in computation time. For an s length dot product,
we simply replace N by s .The expected computation time for Short-Dot is the expected value of the
K-th order statistic of these P iid exponential random variables, which is given by:

E(T) = s

(
1 +

log(P
P−K)

µ

)
=

(P −K +M)N

P

(
1 +

log(P
P−K)

µ

)
. (3)

Here, (3) uses the fact that the expected value of the K-th statistic of P iid exponential random
variables with parameter 1 is

∑P
i=1

1
i −

∑P−K
i=1

1
i ≈ log(P) − log(P − K) [1]. The expected

computation time in the RHS of (3) is minimized when P −K = Θ(M). This minimal expected
time is O(MN

P) for M linear in P and is O
(
MN log(P/M)

P

)
for M sub-linear in P .

Table 2: Probabilistic Computation Times
Strategy E(T) M linear in P M sub-linear in P

Only one Processor MN
(

1 + 1
µ

)
Θ (MN) Θ (MN)

Uncoded (M divides P)2 MN
P

(
1 + log(P)

µ

)
Θ
(
MN
P log(P)

)
Θ
(
MN
P log(P)

)
Repetition (M divides P) 2 N

(
1 + M log(M)

Pµ

)
Θ
(
MN
P log(P)

)
Θ (N)

MDS N

(
1 +

log(P
P−M)
µ

)
Θ(N) Θ(N)

Short-Dot N(P−K+M)
P

(
1 +

log(P
P−K)
µ

)
O(MN

P) O
(
MN
P log

(
P
M

))
2 Refer to Supplement for more accurate analysis taking integer effects into account

Encoding and Decoding Complexity: Even though encoding is a pre-processing step (since A is
assumed to be given in advance), we include a complexity analysis for the sake of completeness. The
encoding requires N

P matrix inversions of size (K −M), and a P ×K matrix multiplication with
a K ×N matrix. The naive encoding complexity is therefore O(NP (K −M)3 + NKP). This is
higher than MDS codes that has an encoding complexity ofO(NMP)), but it is only a one-time cost
that provides savings in online steps (as discussed earlier in this section). The decoding complexity
of Short-Dot is O(K3 +KM) which does not depend on N when M,K � N . This is nearly the
same asO(M3 +M2) complexity of MDS codes. We believe that the complexities might be reduced
further, based on special choices of encoding matrix B.

7

Table 3: Experimental computation time of 10000 dot products (N = 785,M = 10, P = 20)
Strategy Parameter K Mean STDEV Minimum Time Maximum Time

Uncoded 20 11.8653 2.8427 9.5192 27.0818

Short-Dot 18 10.4306 0.9253 8.2145 11.8340

MDS 10 15.3411 0.8987 13.8232 17.5416

5 Experimental Results

We perform experiments on computing clusters at CMU to test the computational time. We use
HTCondor [20] to schedule jobs simultaneously among the P processors. We compare the time
required to classify 10000 handwritten digits of the MNIST [21] database, assuming we are given a
trained 1-layer Neural Network. We separately trained the Neural network using training samples, to
form a matrix of weights, denoted by A10×785. For testing, the multiplication of this given 10× 785
matrix, with the test data matrix X785×10000 is considered. The total number of processors was 20.

Assuming that A10×785 is encoded into F20×785 in a pre-processing step, we store the rows of F
in each processor apriori. Now portions of the data matrix X of size s× 10000 are sent to each of
the P parallel processors as input. We also send a C-program to compute dot-products of length
s = N

P (P −K +M) with appropriate rows of F using command condor-submit. Each processor
outputs the value of one dot-product. The computation time reported in Fig. 6 includes the total time
required to communicate inputs to each processor, compute the dot-products in parallel, fetch the
required outputs, decode and classify all the 10000 test-images, based on 35 experimental runs.

Figure 6: Experimental results: (Left) Mean computation time for Uncoded Strategy, Short-Dot
(K=18) and MDS codes: Short-Dot is faster than MDS by 32% and Uncoded by 12%. (Right) Scatter
plot of computation time for different experimental runs: Short-Dot is faster most of the time.

Key Observations: (See Table 3 for detailed results). Computation time varies based on nature of
straggling, at the particular instant of the experimental run. Short-Dot outperforms both MDS and
Uncoded, in mean computation time. Uncoded is faster than MDS since per-processor computation
time for MDS is larger, and it increases the straggling, even though MDS waits for only for 10 out of
20 processors. However, note that Uncoded has more variability than both MDS and Short-Dot, and
its maximum time observed during the experiment is much greater than both MDS and Short-Dot.
The classification accuracy was 85.98% on test data.

6 Discussion

While we have presented the case of M < P here, Short-Dot easily generalizes to the case where
M ≥ P . The matrix can be divided horizontally into several chunks along the row dimension (shorter
matrices) and Short-Dot can be applied on each of those chunks one after another. Moreover if rows
with same sparsity pattern are grouped together and stored in the same processor initially, then the
communication cost is also significantly reduced during the online computations, since only some
elements of the unknown vector x are sent to a particular processor.

Acknowledgments: Systems on Nanoscale Information fabriCs (SONIC), one of the six SRC
STARnet Centers, sponsored by MARCO and DARPA. We also acknowledge NSF Awards 1350314,
1464336 and 1553248. S Dutta also received Prabhu and Poonam Goel Graduate Fellowship.

8

References
[1] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and Kannan

Ramchandran. Speeding Up Distributed Machine Learning Using Codes. NIPS Workshop on
Learning Systems, 2015.

[2] Da Wang, Gauri Joshi, and Gregory Wornell. Using straggler replication to reduce latency
in large-scale parallel computing. In ACM SIGMETRICS Performance Evaluation Review,
volume 43, pages 7–11, 2015.

[3] Da Wang, Gauri Joshi, and Gregory Wornell. Efficient Task Replication for Fast Response Times
in Parallel Computation. In ACM SIGMETRICS Performance Evaluation Review, volume 42,
pages 599–600, 2014.

[4] Gauri Joshi, Yanpei Liu, and Emina Soljanin. On the delay-storage trade-off in content download
from coded distributed storage systems. IEEE Journal on Selected Areas in Communications,
32(5):989–997, 2014.

[5] Longbo Huang, Sameer Pawar, Hao Zhang, and Kannan Ramchandran. Codes can reduce
queueing delay in data centers. In Proceedings IEEE International Symposium on Information
Theory (ISIT), pages 2766–2770, 2012.

[6] William Dally. High-performance hardware for machine learning. NIPS Tutorial, 2015.

[7] Vipin Kumar, Ananth Grama, Gupta Anshul, and George Karypis. Introduction to Parallel
Computing: Design and Analysis of Algorithms. The Benjamin/Cummings Publishing Company,
Inc., Redwood City, 1994.

[8] Geoffrey C Fox, Steve W Otto, and Anthony JG Hey. Matrix algorithms on a hypercube I:
Matrix multiplication. Parallel computing, 4(1):17–31, 1987.

[9] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969.

[10] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Communication costs of
strassen’s matrix multiplication. Communications of the ACM, 57(2):107–114, 2014.

[11] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM, 56(2):74–
80, 2013.

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
Distributed File System. In Proceedings IEEE Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10, 2010.

[13] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for matrix opera-
tions. IEEE transactions on computers, 100(6):518–528, 1984.

[14] Thomas Herault and Yves Robert. Fault-Tolerance Techniques for High Performance Computing.
Springer, 2015.

[15] William Ryan and Shu Lin. Channel codes: Classical and Modern. Cambridge University
Press, 2009.

[16] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. A unified coding framework
for distributed computing with straggling servers. arXiv:1609.01690v1 [cs.IT], 2016.

[17] Ihab Nahlus, Eric P Kim, Naresh R Shanbhag, and David Blaauw. Energy-efficient Dot-Product
Computation using a Switched Analog Circuit Architecture. In International Symposium on
Low Power Electronics and Design (ISLPED), pages 315–318, 2014.

[18] Ning C Wang, Sujan K Gonugondla, Ihab Nahlus, Naresh Shanbhag, and Eric Pop. GDOT: a
Graphene-Based Nanofunction for Dot-Product Computation. In IEEE Symposium on VLSI
Technology, 2016.

[19] HTCondor. https://research.cs.wisc.edu/htcondor/.

[20] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist, 1998.

9

https://research.cs.wisc.edu/htcondor/
http://yann. lecun. com/exdb/mnist

