NIPS Proceedingsβ

Wasserstein Training of Restricted Boltzmann Machines

Part of: Advances in Neural Information Processing Systems 29 (NIPS 2016)

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Boltzmann machines are able to learn highly complex, multimodal, structured and multiscale real-world data distributions. Parameters of the model are usually learned by minimizing the Kullback-Leibler (KL) divergence from training samples to the learned model. We propose in this work a novel approach for Boltzmann machine training which assumes that a meaningful metric between observations is given. This metric can be represented by the Wasserstein distance between distributions, for which we derive a gradient with respect to the model parameters. Minimization of this new objective leads to generative models with different statistical properties. We demonstrate their practical potential on data completion and denoising, for which the metric between observations plays a crucial role.