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Abstract

In multi-step learning, where a final learning task is accomplished via a sequence of
intermediate learning tasks, the intuition is that successive steps or levels transform
the initial data into representations more and more “suited" to the final learning
task. A related principle arises in transfer-learning where Baxter (2000) proposed a
theoretical framework to study how learning multiple tasks transforms the inductive
bias of a learner. The most widespread multi-step learning approach is semi-
supervised learning with two steps: unsupervised, then supervised. Several authors
(Castelli-Cover, 1996; Balcan-Blum, 2005; Niyogi, 2008; Ben-David et al, 2008;
Urner et al, 2011) have analyzed SSL, with Balcan-Blum (2005) proposing a
version of the PAC learning framework augmented by a “compatibility function"
to link concept class and unlabeled data distribution. We propose to analyze SSL
and other multi-step learning approaches, much in the spirit of Baxter’s framework,
by defining a learning problem generatively as a joint statistical model on X ⇥ Y .
This determines in a natural way the class of conditional distributions that are
possible with each marginal, and amounts to an abstract form of compatibility
function. It also allows to analyze both discrete and non-discrete settings. As tool
for our analysis, we define a notion of �-uniform shattering for statistical models.
We use this to give conditions on the marginal and conditional models which
imply an advantage for multi-step learning approaches. In particular, we recover a
more general version of a result of Poggio et al (2012): under mild hypotheses a
multi-step approach which learns features invariant under successive factors of a
finite group of invariances has sample complexity requirements that are additive
rather than multiplicative in the size of the subgroups.

1 Introduction

The classical PAC learning framework of Valiant (1984) considers a learning problem with unknown
true distribution p on X ⇥ Y , Y = {0, 1} and fixed concept class C consisting of (deterministic)
functions f : X ! Y . The aim of learning is to select a hypothesis h : X ! Y , say from C itself
(realizable case), that best recovers f . More formally, the class C is said to be PAC learnable if there
is a learning algorithm that with high probability selects h 2 C having arbitrarily low generalization
error for all possible distributions D on X . The distribution D governs both the sampling of points
z = (x, y) 2 X ⇥ Y by which the algorithm obtains a training sample and also the cumulation of
error over all x 2 X which gives the generalization error. A modification of this model, together
with the notion of learnable with a model of probability (resp. decision rule) (Haussler, 1989;
Kearns and Schapire, 1994), allows to treat non-deterministic functions f : X ! Y and the case
Y = [0, 1] analogously. Polynomial dependence of the algorithms on sample size and reciprocals
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of probability bounds is further required in both frameworks for efficient learning. Not only do
these frameworks consider worst case error, in the sense of requiring the generalization error to be
small for arbitrary distributions D on X , they assume the same concept class C regardless of the true
underlying distribution D. In addition, choice of the hypothesis class is taken as part of the inductive
bias of the algorithm and not addressed.

Various, by now classic, measures of complexity of a hypothesis space (e.g., VC dimension or
Rademacher complexity, see Mohri et al. (2012) for an overview) allow to prove upper bounds on
generalization error in the above setting, and distribution-specific variants of these such as annealed
VC-entropy (see Devroye et al. (1996)) or Rademacher averages (beginning with Koltchinskii (2001))
can be used to obtain more refined upper bounds.

The widespread strategy of semi-supervised learning (SSL) is known not to fit well into PAC-style
frameworks (Valiant, 1984; Haussler, 1989; Kearns and Schapire, 1994). SSL algorithms perform a
first step using unlabeled training data drawn from a distribution on X , followed by a second step
using labeled training data from a joint distribution on X ⇥ Y . This has been studied by several
authors (Balcan and Blum, 2005; Ben-David et al., 2008; Urner et al., 2011; Niyogi, 2013) following
the seminal work of Castelli and Cover (1996) comparing the value of unlabeled and labeled data.
One immediate observation is that without some tie between the possible marginals D on X and the
concept class C which records possible conditionals p(y|x), there is no benefit to unlabeled data: if D
can be arbitrary then it conveys no information about the true joint distribution that generated labeled
data. Within PAC-style frameworks, however, C and D are completely independent. Balcan and
Blum therefore proposed augmenting the PAC learning framework by the addition of a compatibility
function � : C ⇥ D ! [0, 1], which records the amount of compatibility we believe each concept
from C to have with each D 2 D, the class of “all" distributions on X . This function is required to be
learnable from D and is then used to reduce the concept class from C to a sub-class which will be
used for the subsequent (supervised) learning step. If � is a good compatible function this sub-class
should have lesser complexity than C (Balcan and Blum, 2005). While PAC-style frameworks in
essence allow the true joint distribution to be anything in C⇥D, the existence of a good compatibility
function in the sense of Balcan and Blum (2005) implicitly assumes the joint model that we believe
in is smaller. We return to this point in Section 2.1.

In this paper we study properties of multi-step learning strategies – those which involve multiple
training steps – by considering the advantages of breaking a single learning problem into a sequence
of two learning problems. We start by assuming a true distribution which comes from a class of
joint distributions, i.e. statistical model, P on X ⇥ Y . We prove that underlying structure of a
certain kind in P , together with differential availability of labeled vs. unlabeled data, imply a
quantifiable advantage to multi-step learning at finite sample size. The structure we need is the
existence of a representation t(x) of x 2 X which is a sufficient statistic for the classification or
regression of interest. Two common settings where this assumption holds are: manifold learning and
group-invariant feature learning. In these settings we have respectively

1. t = t

pX is determined by the marginal p
X

and p

X

is concentrated on a submanifold of X ,
2. t = t

G

is determined by a group action on X and p(y|x) is invariant1 under this action.
Learning t in these cases corresponds respectively to learning manifold features or group-invariant
features; various approaches exist (see (Niyogi, 2013; Poggio et al., 2012) for more discussion) and
we do not assume any fixed method. Our framework is also not restricted to these two settings. As a
tool for analysis we define a variant of VC dimension for statistical models which we use to prove
a useful lower bound on generalization error even2 under the assumption that the true distribution
comes from P . This allows us to establish a gap at finite sample size between the error achievable
by a single-step purely supervised learner and that achievable by a semi-supervised learner. We do
not claim an asymptotic gap. The purpose of our analysis is rather to show that differential finite
availability of data can dictate a multi-step learning approach. Our applications are respectively
a strengthening of a manifold learning example analyzed by Niyogi (2013) and a group-invariant
features example related to a result of Poggio et al. (2012). We also discuss the relevance of these to
biological learning.

Our framework has commonalities with a framework of Baxter (2000) for transfer learning. In that
work, Baxter considered learning the inductive bias (i.e., the hypothesis space) for an algorithm for a

1 This means there is a group G of transformations of X such that p(y|x) = p(y|g·x) for all g 2 G.
2(distribution-specific lower bounds are by definition weaker than distribution-free ones)
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“target" learning task, based on experience from previous “source" learning tasks. For this purpose he
defined a learning environment E to be a class of probability distributions on X ⇥ Y together with an
unknown probability distribution Q on E , and assumed E to restrict the possible joint distributions
which may arise. We also make a generative assumption, assuming joint distributions come from P ,
but we do not use a prior Q. Within his framework Baxter studied the reduction in generalization
error for an algorithm to learn a new task, defined by p 2 E , when given access to a sample from p

and a sample from each of m other learning tasks, p
1

, . . . , p

m

2 E , chosen randomly according to Q,
compared with an algorithm having access to only a sample from p. The analysis produced upper
bounds on generalization error in terms of covering numbers and a lower bound was also obtained in
terms of VC dimension in the specific case of shallow neural networks. In proving our lower bound
in terms of a variant of VC dimension we use a minimax analysis.

2 Setup

We assume a learning problem is specified by a joint probability distribution p on Z = X ⇥ Y and a
particular (regression, classification or decision) function f

p

: X ! R determined entirely by p(y|x).
Moreover, we postulate a statistical model P on X ⇥ Y and assume p 2 P . Despite the simplified
notation, f

p

(x) depends on the conditionals p(y|x) and not the entire joint distribution p.

There are three main types of learning problem our framework addresses (reflected in three types
of f

p

). When y is noise-free, i.e. p(y|x) is concentrated at a single y-value v

p

(x) 2 {0, 1},
f

p

= v

p

: X ! {0, 1} (classification); here f

p

(x) = E

p

(y|x). When y is noisy, then either
f

p

: X ! {0, 1} (classification/decision) or f
p

: X ! [0, 1] (regression) and f

p

(x) = E

p

(y|x). In
all three cases the parameters which define f

p

, the learning goal, depend only on p(y|x) = E

p

(y|x).
We assume the learner knows the model P and the type of learning problem, i.e., the hypothesis class
is the “concept class" C := {f

p

: p 2 P}. To be more precise, for the first type of f
p

listed above, this
is the concept class (Kearns and Vazirani, 1994); for the second type, it is a class of decision rules
and for the third type, it is a class of p-concepts (Kearns and Schapire, 1994). For specific choice of
loss functions, we seek worst-case bounds on learning rates, over all distributions p 2 P .

Our results for all three types of learning problem are stated in Theorem 3. To keep the presentation
simple, we give a detailed proof for the first two types, i.e., assuming labels are binary. This shows
how classic PAC-style arguments for discrete X can be adapted to our framework where X may be
smooth. Extending these arguments to handle non-binary Y proceeds by the same modifications as
for discrete X (c.f. Kearns and Schapire (1994)). We remark that in the presence of noise, better
bounds can be obtained (see Theorem 3 for details) if a more technical version of Definition 1 is used
but we leave this for a subsequent paper.

We define the following probabilistic version of fat shattering dimension:

Definition 1. Given P , a class of probability distributions on X⇥{0, 1}, let � 2 (0, 1), ↵ 2 (0, 1/2)
and n 2 N = {0, 1, . . . , ...}. Suppose there exist (disjoint) sets S

i

⇢ X , i 2 {1, . . . , n} with
S = [

i

S

i

, a reference probability measure q on X , and a sub-class P
n

⇢ P of cardinality
|P

n

| = 2n with the following properties:

1. q(S
i

) � �/n for every i 2 {1, . . . , n}
2. q lower bounds the marginals of all p 2 P

n

on S, i.e.
R
B

dp

X

� R
B

dq for any p-measurable
subset B ⇢ S

3. 8 e 2 {0, 1}n, 9 p 2 P
n

such that E
p

(y|x) > 1/2 + ↵ for x 2 S

i

when e

i

= 1 and
E

p

(y|x) < 1/2� ↵ for x 2 S

i

when e

i

= 0

then we say P ↵-shatters S

1

, . . . , S

n

�-uniformly using P
n

. The �-uniform ↵-shattering dimen-

sion of P is the largest n such that P ↵-shatters some collection of n subsets of X �-uniformly.

This provides a measure of complexity of the class P of distributions in the sense that it indicates
the variability of the expected y-values for x constrained to lie in the region S with measure at
least � under corresponding marginals. The reference measure q serves as a lower bound on the
marginals and ensures that they “uniformly" assign probabilty at least � to S. Richness (variability)
of conditionals is thus traded off against uniformity of the corresponding marginal distributions.
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Remark 2 (Uniformity of measure). The technical requirement of a reference distribution q is
automatically satisfied if all marginals p

X

for p 2 P
n

are uniform over S. For simplicity this is the
situation considered in all our examples. The weaker condition (in terms of q) that we postulate in
Definition 1 is however sufficient for our main result, Theorem 3.

If f
p

is binary and y is noise-free then P shatters S

1

, . . . , S

n

�-uniformly if and only if there is
a sub-class P

n

⇢ P with the specified uniformity of measure, such that each f

p

(·) = E

p

(y|·),
p 2 P

n

is constant on each S

i

and the induced set-functions shatter {S
1

, . . . , S

n

} in the usual
(Vapnik-Chervonenkis) sense. In that case, ↵ may be chosen arbitrarily in (0, 1/2) and we omit
mention of it. If f

p

takes values in [0, 1] or f
p

is binary and y noisy then �-uniform shattering can be
expressed in terms of fat-shattering (both at scale ↵).

We show that the �-uniform ↵-shattering dimension of P can be used to lower bound the sample
size required by even the most powerful learner of this class of problems. The proof is in the same
spirit as purely combinatorial proofs of lower bounds using VC-dimension. Essentially the added
condition on P in terms of � allows to convert the risk calculation to a combinatorial problem. As a
counterpoint to the lower bound result, we consider an alternative two step learning strategy which
makes use of underlying structure in X implied by the model P and we obtain upper bounds for the
corresponding risk.

2.1 Underlying structure

We assume a representation t : X ! Rk of the data, such that p(y|x) can be expressed in terms
of p(y|t(x)), say f

p

(x) = g

✓

(t(x)) for some parameter ✓ 2 ⇥. Such a t is generally known in
Statistics as a sufficient dimension reduction for f

p

but here we make no assumption on the dimension
k (compared with the dimension of X). This is in keeping with the paradigm of feature extraction for
use in kernel machines, where the dimension of t(X) may even be higher than the original dimension
of X . As in that setting, what will be important is rather that the intermediate representation t(x)
reduce the complexity of the concept space. While t depends on p we will assume it does so only
via X . For example t could depend on p through the marginal p

X

on X or possible group action on
X; it is a manifestation in the data X , possibly over time, of underlying structure in the true joint
distribution p 2 P . The representation t captures structure in X induced by p. On the other hand, the
regression function itself depends only on the conditional p(y|t(x)).
In general, the natural factorization ⇡ : P ! P

X

, p 7! p

X

determines for each marginal q 2 P
X

a collection ⇡

�1(q) of possible conditionals, namely those p(y|x) arising from joint p 2 P that
have marginal p

X

= q. More generally any sufficient statistic t induces a similar factorization (c.f.
Fisher-Neyman characterization) ⇡

t

: P ! P
t

, p 7! p

t

, where P
t

is the marginal model with respect
to t, and only conditionals p(y|t) are needed for learning. As before, given a known marginal q 2 P

t

,
this implies a collection ⇡

�1

t

(q) of possible conditionals p(y|t) relevant to learning.

Knowing q thus reduces the original problem where p(y|x) or p(y|t) can come from any p 2 P to
one where it comes from p in a reduced class ⇡�1(q) or ⇡�1

t

(q) ( P . Note the similarity with the
assumption of Balcan and Blum (2005) that a good compatibility function reduce the concept class. In
our case the concept class C consists of f

p

defined by p(y|t) in [
t

P
Y |t with P

Y |t :={p(y|t) : p 2 P},
and marginals come from P

t

. The joint model P that we postulate, meanwhile, corresponds to
a subset of C ⇥ P

t

(pairs (f
p

, q) where f

p

uses p 2 ⇡

�1

t

(q)). The indicator function � for this
subset is an abstract (binary) version of compatibility function (recall the compatibility function of
Balcan-Blum should be a [0, 1]-valued function on C ⇥D, satisfying further practical conditions that
our function typically would not). Thus, in a sense, our assumption of a joint model P and sufficient
statistic t amounts to a general form of compatibility function that links C and D without making
assumptions on how t might be learned. This is enough to imply the original learning problem can be
factored into first learning the structure t and then learning the parameter ✓ for f

p

(x) = g

✓

(t(x)) in a
reduced hypothesis space. Our goal is to understand when and why one should do so.

2.2 Learning rates

We wish to quantify the benefits achieved by using such a factorization in terms of the bounds on
the expected loss (i.e. risk) for a sample of size m 2 N drawn iid from any p 2 P . We assume the
learner is provided with a sample z̄ = (z

1

, z

2

· · · z
m

), with z

i

= (x
i

, y

i

) 2 X ⇥ Y = Z, drawn iid
from the distribution p and uses an algorithm A : Zm ! C = H to select A(z̄) to approximate f

p

.
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Let `(A(z̄), f
p

) denote a specific loss. It might be 0/1, absolute, squared, hinge or logistic loss. We
define L(A(z̄), f

p

) to be the global expectation or L2-norm of one of those pointwise losses `:

L(A(z̄), f
p

) := E

x

`(A(z̄)(x), f
p

(x)) =

Z

X

`(A(z̄)(x), f
p

(x))dp
X

(x) (1)

or

L(A(z̄), f
p

) := ||`(A(z̄), f
p

)||
L

2
(pX)

=

sZ

X

`(A(z̄)(x), f
p

(x))2dp
X

. (2)

Then the worst case expected loss (i.e. minimax risk) for the best learning algorithm with no
knowledge of t

pX is

R(m) := inf
A

sup
p2P

E

z̄

L(A(z̄), f
p

) = inf
A

sup
q2PX

sup
p(y|tq)s.t.
p2P,pX=q

E

z̄

L(A(z̄, f
p

) . (3)

while for the best learning algorithm with oracle knowledge of t
pX it is

Q(m) := sup
q2PX

inf
A

sup
p(y|tq)s.t.
p2P,pX=q

E

z̄

L(A(z̄, f
p

) . (4)

Some clarification is in order regarding the classes over which the suprema are taken. In principle
the worst case expected loss for a given A is the supremum over P of the expected loss. Since f

p

(x)
is determined by p(y|t

pX (x)), and t

pX is determined by p

X

this is a supremum over q 2 P
X

of
a supremum over p(y|t

q

(·)) such that p
X

= q. Finding the worst case expected error for the best
A therefore means taking the infimum of the supremum just described. In the case of Q(m) since
the algorithm knows t

q

, the order of the supremum over t changes with respect to the infimum: the
learner can select the best algorithm A using knowledge of t

q

.

Clearly R(m) � Q(m) by definition. In the next section, we lower bound R(m) and upper bound
Q(m) to establish a gap between R(m) and Q(m).

3 Main Result

We show that �-uniform shattering dimension n or more implies a lower bound on the worst case
expected error, R(m), when the sample size m  n. In particular - in the setup specified in the
previous section - if {g

✓

(·) : ✓ 2 ⇥} has much smaller VC dimension than n this results in a distinct
gap between rates for a learner with oracle access to t

pX and a learner without.
Theorem 3. Consider the framework defined in the previous Section with Y = {0, 1}. Assume
{g

✓

(·) : ✓ 2 ⇥} has VC dimension d < m and P has �-uniform ↵-shattering dimension n � (1+✏)m.

Then, for sample size m, Q(m)  16
q

d log(m+1)+log 8+1

2m

while R(m) > ✏bc�

m+1

/8 where b

depends both on the type of loss and the presence of noise, while c depends on noise.

Assume the standard definition in (1). If f
p

are binary (in the noise-free or noisy setting) b = 1
for absolute, squared, 0-1, hinge or logistic loss. In the noisy setting, if f

p

= E(y|x) 2 [0, 1],
b = ↵ for absolute loss and b = ↵

2 for squared loss. In general, c = 1 in the noise-free setting
and c = (1/2 + ↵)m in the noisy setting. By requiring P to satisfy a stronger notion of �-uniform
↵-shattering one can obtain c = 1 even in the noisy case.

Note that for sample size m and �-uniform ↵-shattering dimension 2m, we have ✏ = 1, so the lower
bound in its simplest form becomes �m+1

/8. This is the bound we will use in the next Section to
derive implications of Theorem 3.
Remark 4. We have stated in the Theorem a simple upper bound, sticking to Y = {0, 1} and using
VC dimension, in order to focus the presentation on the lower bound which uses the new complexity
measure. The upper bound could be improved. It could also be replaced with a corresponding upper
bound assuming instead Y = [0, 1] and fat shattering dimension d.

Proof. The upper bound on Q(m) holds for an ERM algorithm (by the classic argument, see for
example Corollary 12.1 in Devroye et al. (1996)). We focus here on the lower bound for R(m).
Moreover, we stick to the simpler definition of �-uniform shattering in Definition 1 and omit proof of
the final statement of the Theorem, which is slightly more involved. We let n = 2m (i.e. ✏ = 1) and
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we comment in a footnote on the result for general ✏. Let S
1

, . . . , S

2m

be sets which are �-uniformly
↵-shattered using the family P

2m

⇢ P and denote their union by S. By assumption S has measure
at least � under a reference measure q which is dominated by all marginals p

X

for p 2 P
2m

(see
Definition 1). We divide our argument into three parts.
1. If we prove a lower bound for the average over P

2m

,

8A,

1

22m

X

p2P2m

E

z̄

L(A(z̄), f
p

) � bc�

m+1

/8 (5)

it will also be a lower bound for the supremum over P
2m

:

8A, sup
p2P2m

E

z̄

L(A(z̄), f
p

) � bc�

m+1

/8 .

and hence for the supremum over P . It therefore suffices to prove (5).
2. Given x 2 S, define v

p

(x) to be the more likely label for x under the joint distribution p 2 P
2m

.
This notation extends to the noisy case the definition of v

p

already given for the noise-free case. The
uniform shattering condition implies p(v

p

(x)|x) > 1/2 + ↵ in the noisy case and p(v
p

(x)|x) = 1
in the noise-free case. Given x̄ = (x

1

, . . . , x

m

) 2 S

m, write z̄

p

(x̄) := (z
1

, . . . , z

m

) where z

j

=
(x

j

, v

p

(x
j

)). Then

E

z̄

L(A(z̄), f
p

) =

Z

Z

m

L(A(z̄), f
p

)dpm(z̄)

�
Z

S

m⇥Y

m

L(A(z̄), f
p

)dpm(z̄) � c

Z

S

m

L(A(z̄
p

(x̄)), f
p

)dpm
X

(x̄)

where c is as specified in the Theorem. Note the sets

V

l

:= {x̄ 2 S

m ⇢ X

m : the x

j

occupy exactly l of the S

i

}
for l = 1, . . . ,m define a partition of Sm. Recall that dp

X

� dq on S for all p 2 P
2m

so
Z

S

m

L(A(z̄
p

(x̄)), f
p

)dpm
X

(x̄) � 1

22m

X

p2P2m

mX

l=1

Z

x̄2Vl

L(A(z̄
p

(x̄)), f
p

) dqm(x̄)

=
mX

l=1

Z

x̄2Vl

0

BBBB@
1

22m

X

p2P2m

L(A(z̄
p

(x̄)), f
p

)

| {z }
I

1

CCCCA
dq

m(x̄).

We claim the integrand, I , is bounded below by b�/8 (this computation is performed in part 3, and
depends on knowing x̄ 2 V

l

). At the same time, S has measure at least � under q so
mX

l=1

Z

x̄2Vl

dq

m(x̄) =

Z

x̄2S

m

dq

m(x̄) � �

m

which will complete the proof of (5).
3. We now assume a fixed but arbitrary x̄ 2 V

l

and prove I � b�/8. To simplify the discussion,
we will refer to sets S

i

which contain a component x
j

of x̄ as S
i

with data. We also need notation
for the elements of P

2m

: for each L ⇢ [2m] denote by p

(L) the unique element of P
2m

such that
v

p

(L) |
Si = 1 if i 2 L, and v

p

(L) |
Si = 0 if i /2 L. Now, let L

x̄

:= {i 2 [2m] : x̄ \ S

i

6= ;}. These
are the indices of sets S

i

with data. By assumption |L
x̄

| = l, and so |Lc

x̄

| = 2m� l.

Every subset L ⇢ [2m] and hence every p 2 P
2m

is determined by L \ L

x̄

and L \ L

c

x̄

. We will
collect together all p(L) having the same L \ L

x̄

, namely for each D ⇢ L

x̄

define

P
D

:= {p(L) 2 P
2m

: L \ L

x̄

= D}.
These 2l families partition P

2m

and in each P
D

there are 22m�l probability distributions. Most
importantly, z̄

p

(x̄) is the same for all p 2 P
D

(because D determines v
p

on the S

i

with data). This
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implies A(z̄
p

(x̄)) : X ! R is the same function3 of X for all p in a given P
D

. To simplify notation,
since we will be working within a single P

D

, we write f := A(z̄(x̄)).

While f is the hypothesized regression function given data x̄, f
p

is the true regression function when
p is the underlying distribution. For each set S

i

let v
i

be 1 if f is above 1/2 on a majority of S
i

using
reference measure q (a q-majority) and 0 otherwise.

We now focus on the “unseen" S

i

where no data lie (i.e., i 2 L

c

x̄

) and use the v

i

to specify a 1-1
correspondence between elements p 2 P

D

and subsets K ⇢ L

c

x̄

:
p 2 P

D

 ! K

p

:= {i 2 L

c

x̄

: v
p

6= v

i

}.
Take a specific p 2 P

D

with its associated K

p

. We have |f(x)� f

p

(x)| > ↵ on the q-majority of the
set S

i

for all i 2 K

p

.

The condition |f(x) � f

p

(x)| > ↵ with f(x) and f

p

(x) on opposite sides of 1/2 implies a lower
bound on `(f(x), f

p

(x)) for each of the pointwise loss functions ` that we consider (0/1, absolute,
square, hinge, logistic). The value of b, however, differs from case to case (see Appendix).

For now we have,Z

Si

`(f(x), f
p

(x)) dp
X

(x) �
Z

Si

`(f(x), f
p

(x)) dq(x) � b

1

2

Z

Si

dq(x) � b�

4m
.

Summing over all i 2 K

p

, and letting k = |K
p

|, we obtain (still for the same p)

L(f(x), f
p

(x)) � k

b�

4m
(assuming L is defined by equation (1))4. There are

�
2m�`

k

�
possible K with cardinality k, for any

k = 0, . . . , 2m� `. Therefore,
X

p2PD

L(f(x), f
p

(x)) �
2m�`X

k=0

✓
2m� `

k

◆
k

b�

4m
=

22m�`(2m� `)

2

b�

4m
� 22m�`

b�

8

(using 2m � ` � 2m �m = m)5. Since D was an arbitrary subset of L
x̄

, this same lower bound
holds for each of the 2` families P

D

and so

I =
1

22m

X

p2P2m

L(f(x), f
p

(x)) � b�

8
.

In the constructions of the next Section it is often the case that one can prove a different level of
shattering for different n, namely �(n)-uniform shattering of n subsets for various n. The following
Corollary is an immediate consequence of the Theorem for such settings. We state it for binary f

p

without noise.
Corollary 5. Let C 2 (0, 1) and M 2 N. If P �(n)-uniformly ↵-shatters n subsets of X and
�(n)n+1

/8 > C for all n < M then no learning algorithm can achieve worst case expected error
below ↵C, using a training sample of size less than M/2. If such uniform shattering holds for all
n 2 N then the same lower bound applies regardless of sample size.

Even when �(n)-uniform shattering holds for all n 2 N and lim
n!1 �(n) = 1, if �(n) approaches

1 sufficiently slowly then it is possible �(n)n+1 ! 0 and there is no asymptotic obstacle to learning.
By contrast, the next Section shows an extreme situation where lim

n!1 �(n)n+1 � e > 0. In that
case, learning is impossible.

4 Applications and conclusion

Manifold learning We now describe a simpler, finite dimensional version of the example in Niyogi
(2013). Let X = RD, D � 2 and Y = {0, 1}. Fix N 2 N and consider a very simple type of
1-dimensional manifold in X , namely the union of N linear segments, connected in circular fashion
(see Figure 1). Let P

X

be the collection of marginal distributions, each of which is supported on and
assigns uniform probability along a curve of this type. There is a 1-1 correspondence between the
elements of P

X

and curves just described.
3Warning: f need not be an element of {fp : p 2 P2n}; we only know f 2 H = {fp : p 2 P}.
4In the L

2 version, using
p
x � x, the reader can verify the same lower bound holds.

5In the case where we use (1 + ✏)m instead of 2m, we would have (1 + ✏)m� ` � ✏m here.
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Figure 1: An example of M with N = 12. The
dashed curve is labeled 1, the solid curve 0 (in
next Figure as well).

Figure 2: M with N = 28 = 4(n+ 1) pieces,
used to prove uniform shattering of n sets
(shown for the case n = 6 with e = 010010).

On each curve M, choose two distinct points x

0
, x

00. Removing these disconnects M. Let one
component be labeled 0 and the other 1, then label x0 and x

00 oppositely. Let P be the class of joint
distributions on X ⇥ Y with conditionals as described and marginals in P

X

. This is a noise-free
setting and f

p

is binary. Given M (or circular coordinates on M), consider the reduced class
P 0 := {p 2 P : support(p

X

) = M}. Then H0 := {f
p

: p 2 P 0} has VC dimension 3. On the
other hand, for n < N/4� 1 it can be shown that P �(n)-uniformly shatters n sets with f

p

, where
�(n) = 1� 1

n+1

(see Appendix and Figure 2). Since (1� 1

n+1

)n+1 ! e > 0 as n!1, it follows
from Corollary 5 that the worst case expected error is bounded below by e/8 for any sample of size
n  N/8 � 1/2. If many linear pieces are allowed (i.e. N is high) this could be an impractical
number of labeled examples. By contrast with this example, �(n) in Niyogi’s example cannot be
made arbitrarily close to 1.

Group-invariant features We give a simplified, partially-discrete example (for a smooth version
and Figures, see Appendix). Let Y = {0, 1} and let X = J ⇥ I where J = {0, 1, . . . , n

1

�
1} ⇥ {0, 1, . . . , n

2

� 1} is an n

1

by n

2

grid (n
i

2 N) and I = [0, 1] is a real line segment. One
should picture X as a rectangular array of vertical sticks. Above each grid point (j

1

, j

2

) consider
two special points on the stick I , one with i = i

+

:= 1 � ✏ and the other with i = i� := 0 + ✏.
Let P

X

contain only the uniform distribution on X and assume the noise-free setting. For each
ē 2 {+,�}n1n2 , on each segment (j

1

, j

2

) ⇥ I assign, via p

ē

, the label 1 above the special point
(determined by ē) and 0 below the point. This determines a family of n

1

n

2

conditional distributions
and thus a family P := {p

ē

: ē 2 {+,�}n1n2} of n
1

n

2

joint distributions. The reader can verify
that P has 2✏-uniform shattering dimension n

1

n

2

. Note that when the true distribution is p
ē

for some
ē 2 {+,�}n1n2 the labels will be invariant under the action a

ē

of Z
n1 ⇥ Z

n2 defined as follows.
Given (z

1

, z

2

) 2 Z
n1 ⇥Z

n2 and (j
1

, j

2

) 2 J , let the group element (z
1

, z

2

) move the vertical stick at
(j

1

, j

2

) to the one at (z
1

+ j

1

mod n

1

, z

2

+ j

2

mod n

2

) without flipping the stick over, just stretching
it as needed so the special point i± determined by ē on the first stick goes to the one on the second
stick. The orbit space of the action can be identified with I . Let t : X ⇥ Y ! I be the projection
of X ⇥ Y to this orbit space, then there is an induced labelling of this orbit space (because labels
were invariant under the action of the group). Given access to t, the resulting concept class has VC
dimension 1. On the other hand, given instead access to a projection s for the action of the subgroup
Z
n1 ⇥ {0}, the class eP := {p(·|s) : p 2 P} has 2✏-uniform shattering dimension n

2

. Thus we have
a general setting where the over-all complexity requirements for two-step learning are n

1

+ n

2

while
for single-step learning they are n

1

n

2

.

Conclusion We used a notion of uniform shattering to demonstrate both manifold learning and
invariant feature learning situations where learning becomes impossible unless the learner has access
to very large amounts of labeled data or else uses a two-step semi-supervised approach in which
suitable manifold- or group-invariant features are learned first in unsupervised fashion. Our examples
also provide a complexity manifestation of the advantages, observed by Poggio and Mallat, of forming
intermediate group-invariant features according to sub-groups of a larger transformation group.
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