
Learning Kernels with Random Features

Aman Sinha1 John Duchi1,2
Departments of 1Electrical Engineering and 2Statistics

Stanford University
{amans,jduchi}@stanford.edu

Abstract

Randomized features provide a computationally efficient way to approximate kernel
machines in machine learning tasks. However, such methods require a user-defined
kernel as input. We extend the randomized-feature approach to the task of learning
a kernel (via its associated random features). Specifically, we present an efficient
optimization problem that learns a kernel in a supervised manner. We prove the
consistency of the estimated kernel as well as generalization bounds for the class
of estimators induced by the optimized kernel, and we experimentally evaluate our
technique on several datasets. Our approach is efficient and highly scalable, and we
attain competitive results with a fraction of the training cost of other techniques.

1 Introduction

An essential element of supervised learning systems is the representation of input data. Kernel
methods [27] provide one approach to this problem: they implicitly transform the data to a new
feature space, allowing non-linear data representations. This representation comes with a cost, as
kernelized learning algorithms require time that grows at least quadratically in the data set size,
and predictions with a kernelized procedure require the entire training set. This motivated Rahimi
and Recht [24, 25] to develop randomized methods that efficiently approximate kernel evaluations
with explicit feature transformations; this approach gives substantial computational benefits for large
training sets and allows the use of simple linear models in the randomly constructed feature space.

Whether we use standard kernel methods or randomized approaches, using the “right” kernel for a
problem can make the difference between learning a useful or useless model. Standard kernel methods
as well as the aforementioned randomized-feature techniques assume the input of a user-defined
kernel—a weakness if we do not a priori know a good data representation. To address this weakness,
one often wishes to learn a good kernel, which requires substantial computation. We combine kernel
learning with randomization, exploiting the computational advantages offered by randomized features
to learn the kernel in a supervised manner. Specifically, we use a simple pre-processing stage for
selecting our random features rather than jointly optimizing over the kernel and model parameters.
Our workflow is straightforward: we create randomized features, solve a simple optimization problem
to select a subset, then train a model with the optimized features. The procedure results in lower-
dimensional models than the original random-feature approach for the same performance. We give
empirical evidence supporting these claims and provide theoretical guarantees that our procedure is
consistent with respect to the limits of infinite training data and infinite-dimensional random features.

1.1 Related work

To discuss related work, we first describe the supervised learning problem underlying our approach.
We have a cost c : R× Y → R, where c(·, y) is convex for y ∈ Y , and a reproducing kernel Hilbert
space (RKHS) of functions F with kernel K. Given a sample {(xi, yi)}ni=1, the usual `2-regularized

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

learning problem is to solve the following (shown in primal and dual forms respectively):

minimize
f∈F

n∑
i=1

c(f(xi), yi) +
λ

2
‖f‖22 , or maximize

α∈Rn
−

n∑
i=1

c∗(αi, y
i)− 1

2λ
αTGα, (1)

where ‖·‖2 denotes the Hilbert space norm, c∗(α, y) = supz{αz − c(z, y)} is the convex conjugate
of c (for fixed y) and G = [K(xi, xj)]ni,j=1 denotes the Gram matrix.

Several researchers have studied kernel learning. As noted by Gönen and Alpaydın [14], most
formulations fall into one of a few categories. In the supervised setting, one assumes a base class
or classes of kernels and either uses heuristic rules to combine kernels [2, 23], optimizes structured
(e.g. linear, nonnegative, convex) compositions of the kernels with respect to an alignment metric
[9, 16, 20, 28], or jointly optimizes kernel compositions with empirical risk [17, 20, 29]. The latter
approaches require an eigendecomposition of the Gram matrix or costly optimization problems
(e.g. quadratic or semidefinite programs) [10, 14], but these models have a variety of generalization
guarantees [1, 8, 10, 18, 19]. Bayesian variants of compositional kernel search also exist [12, 13]. In
un- and semi-supervised settings, the goal is to learn an embedding of the input distribution followed
by a simple classifier in the embedded space (e.g. [15]); the hope is that the input distribution carries
the structure relevant to the task. Despite the current popularity of these techniques, especially deep
neural architectures, they are costly, and it is difficult to provide guarantees on their performance.

Our approach optimizes kernel compositions with respect to an alignment metric, but rather than work
with Gram matrices in the original data representation, we work with randomized feature maps that
approximate RKHS embeddings. We learn a kernel that is structurally different from a user-supplied
base kernel, and our method is an efficiently (near linear-time) solvable convex program.

2 Proposed approach

At a high level, we take a feature mapping, find a distribution that aligns this mapping with the labels
y, and draw random features from the learned distribution; we then use these features in a standard
supervised learning approach.

For simplicity, we focus on binary classification: we have n datapoints (xi, yi) ∈ Rd × {−1, 1}.
Letting φ : Rd ×W → [−1, 1] and Q be a probability measure on a spaceW , define the kernel

KQ(x, x′) :=

∫
φ(x,w)φ(x′, w)dQ(w). (2)

We want to find the “best” kernel KQ over all distributions Q in some (large, nonparametric) set P of
possible distributions on random features; we consider a kernel alignment problem of the form

maximize
Q∈P

∑
i,j

KQ(xi, xj)yiyj . (3)

We focus on sets P defined by divergence measures on the space of probability distributions.
For a convex function f with f(1) = 0, the f -divergence between distributions P and Q is
Df (P ||Q) =

∫
f(dPdQ)dQ. Then, for a base (user-defined) distribution P0, we consider collec-

tions P := {Q : Df (Q||P0) ≤ ρ} where ρ > 0 is a specified constant. In this paper, we focus
on divergences f(t) = tk − 1 for k ≥ 2. Intuitively, the distribution Q maximizing the align-
ment (3) gives a feature space in which pairwise distances are similar to those in the output space Y .
Unfortunately, the problem (3) is generally intractable as it is infinite dimensional.

Using the randomized feature approach, we approximate the integral (2) as a discrete sum over
samples W i iid∼ P0, i ∈ [Nw]. Defining the discrete approximation PNw := {q : Df (q||1/Nw) ≤ ρ}
to P , we have the following empirical version of problem (3):

maximize
q∈PNw

∑
i,j

yiyj
Nw∑
m=1

qmφ(xi, wm)φ(xj , wm). (4)

Using randomized features, matching the input and output distances in problem (4) translates to
finding a (weighted) set of points among w1, w2, ..., wNw that best “describe” the underlying dataset,
or, more directly, finding weights q so that the kernel matrix matches the correlation matrix yyT .

2

Given a solution q̂ to problem (4), we can solve the primal form of problem (1) in two ways. First, we
can apply the Rahimi and Recht [24] approach by drawing D samples W 1, . . . ,WD iid∼ q̂, defining
features φi = [φ(xi, w1) · · · φ(xi, wD)]T , and solving the risk minimization problem

θ̂ = argmin
θ

{ n∑
i=1

c
(

1√
D
θTφi, yi

)
+ r(θ)

}
(5)

for some regularization r. Alternatively, we may set φi = [φ(xi, w1) · · · φ(xi, wNw)]T , where
w1, . . . , wNw are the original random samples from P0 used to solve (4), and directly solve

θ̂ = argmin
θ

{ n∑
i=1

c(θT diag(q̂)
1
2φi, yi) + r(θ)

}
. (6)

Notably, if q̂ is sparse, the problem (6) need only store the random features corresponding to non-zero
entries of q̂. Contrast our two-phase procedure to that of Rahimi and Recht [25], which samples
W 1, . . . ,WD iid∼ P0 and solves the minimization problem

minimize
α∈RNw

n∑
i=1

c

(D∑
m=1

αmφ(xi, wm), yi
)

subject to ‖α‖∞ ≤ C/Nw, (7)

where C is a numerical constant. At first glance, it appears that we may suffer both in terms of
computational efficiency and in classification or learning performance compared to the one-step
procedure (7). However, as we show in the sequel, the alignment problem (4) can be solved very
efficiently and often yields sparse vectors q̂, thus substantially decreasing the dimensionality of
problem (6). Additionally, we give experimental evidence in Section 4 that the two-phase procedure
yields generalization performance similar to standard kernel and randomized feature methods.

2.1 Efficiently solving problem (4)

The optimization problem (4) has structure that enables efficient (near linear-time) solutions. Define
the matrix Φ = [φ1 · · · φn] ∈ RNw×n, where φi = [φ(xi, w1) · · · φ(xi, wNw)]T ∈ RNw is the
randomized feature representation for xi and wm iid∼ P0. We can rewrite the optimization objective as∑

i,j

yiyj
Nw∑
m=1

qmφ(xi, wm)φ(xj , wm) =

Nw∑
m=1

qm

(n∑
i=1

yiφ(xi, wm)

)2

= qT ((Φy)� (Φy)) ,

where � denotes the Hadamard product. Constructing the linear objective requires the evaluation of
Φy. Assuming that the computation of φ isO(d), construction of Φ isO(nNwd) on a single processor.
However, this construction is trivially parallelizable. Furthermore, computation can be sped up even
further for certain distributions P0. For example, the Fastfood technique can approximate Φ in
O(nNw log(d)) time for the Gaussian kernel [21].

The problem (4) is also efficiently solvable via bisection over a scalar dual variable. Using λ ≥ 0 for
the constraint Df (Q||P0) ≤ ρ, a partial Lagrangian is

L(q, λ) = qT ((Φy)� (Φy))− λ (Df (q||1/Nw)− ρ) .

The corresponding dual function is g(λ) = supq∈∆ L(q, λ), where ∆ := {q ∈ RNw+ : qT1 = 1}
is the probability simplex. Minimizing g(λ) yields the solution to problem (4); this is a convex
optimization problem in one dimension so we can use bisection. The computationally expensive step
in each iteration is maximizing L(q, λ) with respect to q for a given λ. For f(t) = tk − 1, we define
v := (Φy)� (Φy) and solve

maximize
q∈∆

qT v − λ 1

Nw

Nw∑
m=1

(Nwqm)k. (8)

This has a solution of the form qm =
[
vm/λN

k−1
w + τ

] 1
k−1

+
, where τ is chosen so that

∑
m qm = 1.

We can find such a τ by a variant of median-based search in O(Nw) time [11]. Thus, for any k ≥ 2,
an ε-suboptimal solution to problem (4) can be found in O(Nw log(1/ε)) time (see Algorithm 1).

3

Algorithm 1 Kernel optimization with f(t) = tk − 1 as divergence
INPUT: distribution P0 onW , sample {(xi, yi)}ni=1, Nw ∈ N, feature function φ, ε > 0
OUTPUT: q ∈ RNw that is an ε-suboptimal solution to (4).
SETUP: Draw Nw samples wm iid∼ P0, build feature matrix Φ, compute v := (Φy)� (Φy).
Set λu ←∞, λl ← 0, λs ← 1
while λu =∞
q ← argmaxq∈∆ L(q, λs) // (solution to problem (8))
if Df (q||1/Nw) < ρ then λu ← λs else λs ← 2λs

while λu − λl > ελs

λ← (λu + λl)/2
q ← argmaxq∈∆ L(q, λ) // (solution to problem (8))
if Df (q||1/Nw) < ρ then λu ← λ else λl ← λ

3 Consistency and generalization performance guarantees

Although the procedure (4) is a discrete approximation to a heuristic kernel alignment problem,
we can provide guarantees on its performance as well as the generalization performance of our
subsequent model trained with the optimized kernel.

Consistency First, we provide guarantees that the solution to problem (4) approaches a population
optimum as the data and random sampling increase (n → ∞ and Nw → ∞, respectively). We
consider the following (slightly more general) setting: let S : X × X → [−1, 1] be a bounded
function, where we intuitively think of S(x, x′) as a similarity metric between labels for x and x′,
and denote Sij := S(xi, xj) (in the binary case with y ∈ {−1, 1}, we have Sij = yiyj). We then
define the alignment functions

T (P) := E[S(X,X ′)KP (X,X ′)], T̂ (P) :=
1

n(n− 1)

∑
i 6=j

SijKP (xi, xj),

where the expectation is taken over S and the independent variables X,X ′. Lemmas 1 and 2 provide
consistency guarantees with respect to the data sample (xi and Sij) and the random feature sample
(wm); together they give us the overall consistency result of Theorem 1. We provide proofs in the
supplement (Sections A.1, A.2, and A.3 respectively).
Lemma 1 (Consistency with respect to data). Let f(t) = tk−1 for k ≥ 2. Let P0 be any distribution
on the spaceW , and let P = {Q : Df (Q||P0) ≤ ρ}. Then

P
(

sup
Q∈P

∣∣∣∣T̂ (Q)− T (Q)

∣∣∣∣ ≥ t) ≤ √2 exp

(
− nt2

16(1 + ρ)

)
.

Lemma 1 shows that the empirical quantity T̂ is close to the true T . Now we show that, independent
of the size of the training data, we can consistently estimate the optimal Q ∈ P via sampling (i.e.
Q ∈ PNw).
Lemma 2 (Consistency with respect to sampling features). Let the conditions of Lemma 1 hold.
Then, with Cρ = 2(ρ+1)√

1+ρ−1
and Dρ =

√
8(1 + ρ), we have∣∣∣∣ sup

Q∈PNw
T̂ (Q)− sup

Q∈P
T̂ (Q)

∣∣∣∣ ≤ 4Cρ

√
log(2Nw)

Nw
+Dρ

√
log 2

δ

Nw

with probability at least 1− δ over the draw of the samples Wm iid∼ P0.

Finally, we combine the consistency guarantees for data and sampling to reach our main result, which
shows that the alignment provided by the estimated distribution Q̂ is nearly optimal.

Theorem 1. Let Q̂w maximize T̂ (Q) over Q ∈ PNw . Then, with probability at least 1− 3δ over the
sampling of both (x, y) and W , we have∣∣∣∣T (Q̂w)− sup

Q∈P
T (Q)

∣∣∣∣ ≤ 4Cρ

√
log(2Nw)

Nw
+Dρ

√
log 2

δ

Nw
+ 2Dρ

√
2 log 2

δ

n
.

4

Generalization performance The consistency results above show that our optimization procedure
nearly maximizes alignment T (P), but they say little about generalization performance for our model
trained using the optimized kernel. We now show that the class of estimators employed by our method
has strong performance guarantees. By construction, our estimator (6) uses the function class

FNw :=
{
h(x) =

Nw∑
m=1

αm
√
qmφ(x,wm) | q ∈ PNw , ‖α‖2 ≤ B

}
,

and we provide bounds on its generalization via empirical Rademacher complexity. To that end,
define Rn(FNw) := 1

nE[supf∈FNw
∑n
i=1 σif(xi)], where the expectation is taken over the i.i.d.

Rademacher variables σi ∈ {−1, 1}. We have the following lemma, whose proof is in Section A.4.

Lemma 3. Under the conditions of the preceding paragraph,Rn(FNw) ≤ B
√

2(1+ρ)
n .

Applying standard concentration results, we obtain the following generalization guarantee.
Theorem 2 ([8, 18]). Let the true misclassification risk and ν-empirical misclassification risk for an
estimator h be defined as follows:

R(h) := P(Y h(X) < 0), R̂ν(h) :=
1

n

n∑
i=1

min
{

1,
[
1− yh(xi)/ν

]
+

}
.

Then suph∈FNw {R(h)− R̂ν(h)} ≤ 2
νRn(FNw) + 3

√
log 2

δ

2n with probability at least 1− δ.

The bound is independent of the number of terms Nw, though in practice we let B grow with Nw.

4 Empirical evaluations

We now turn to empirical evaluations, comparing our approach’s predictive performance with that of
Rahimi and Recht’s randomized features [24] as well as a joint optimization over kernel compositions
and empirical risk. In each of our experiments, we investigate the effect of increasing dimensionality
of the randomized feature space D. For our approach, we use the χ2-divergence (k = 2 or f(t) =
t2 − 1). Letting q̂ denote the solution to problem (4), we use two variants of our approach: when
D < nnz(q̂) we use estimator (5), and we use estimator (6) otherwise. For the original randomized
feature approach, we relax the constraint in problem (7) with an `2 penalty. Finally, for the joint
optimization in which we learn the kernel and classifier together, we consider the kernel-learning
objective, i.e. finding the best Gram matrix G in problem (1) for the soft-margin SVM [14]:

minimizeq∈PNw supα αT1− 1
2

∑
i,j αiαjy

iyj
∑Nw
m=1 qmφ(xi, wm)φ(xj , wm)

subject to 0 � α � C1, αT y = 0.
(9)

We use a standard primal-dual algorithm [4] to solve the min-max problem (9). While this is an
expensive optimization, it is a convex problem and is solvable in polynomial time.

In Section 4.1, we visualize a particular problem that illustrates the effectiveness of our approach
when the user-defined kernel is poor. Section 4.2 shows how learning the kernel can be used to quickly
find a sparse set of features in high dimensional data, and Section 4.3 compares our performance with
unoptimized random features and the joint procedure (9) on benchmark datasets. The supplement
contains more experimental results in Section C.

4.1 Learning a new kernel with a poor choice of P0

For our first experiment, we generate synthetic data xi iid∼ N(0, I) with labels yi = sign(‖x‖2−
√
d),

where x ∈ Rd. The Gaussian kernel is ill-suited for this task, as the Euclidean distance used
in this kernel does not capture the underlying structure of the classes. Nevertheless, we use the
Gaussian kernel, which corresponds [24] to φ(x, (w, v)) = cos((x, 1)T (w, v)) where (W,V) ∼
N(0, I) × Uni(0, 2π), to showcase the effects of our method. We consider a training set of size
n = 104 and a test set of size 103, and we employ logistic regression with D = nnz(q̂) for both our
technique as well as the original random feature approach.1

1For 2 ≤ d ≤ 15, nnz(q̂) < 250 when the kernel is trained with Nw = 2 · 104, and ρ = 200.

5

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(a) Training data & optimized features for d = 2

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

GK-train

GK-test

OK-train

OK-test

(b) Error vs. d

Figure 1. Experiments with synthetic data. (a) Positive and negative training examples are blue and red,
and optimized randomized features (wm) are yellow. All offset parameters vm were optimized to be
near 0 or π (not shown). (b) Misclassification error of logistic regression model vs. dimensionality of
data. GK denotes random features with a Gaussian kernel, and our optimized kernel is denoted OK.

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

(a) Error vs. D
10

1
10

2
10

3
10

4
10

5

0

0.01

0.02

0.03

0.04

0.05

(b) q̂i vs. i

Figure 2. Feature selection in sparse data. (a) Misclassification error of ridge regression model vs.
dimensionality of data. LK denotes random features with a linear kernel, and OK denotes our method.
Our error is fixed above D = nnz(q̂) after which we employ estimator (6). (b) Weight of feature i in
optimized kernel (qi) vs. i. Vertical bars delineate separations between k-grams, where 1 ≤ k ≤ 5 is
nondecreasing in i. Circled features are prefixes of GGTTG and GTTGG at indices 60–64.

Figure 1 shows the results of the experiments for d ∈ {2, . . . , 15}. Figure 1(a) illustrates the output
of the optimization when d = 2. The selected kernel features wm lie near (1, 1) and (−1,−1); the
offsets vm are near 0 and π, giving the feature φ(·, w, v) a parity flip. Thus, the kernel computes
similarity between datapoints via neighborhoods of (1, 1) and (−1,−1) close to the classification
boundary. In higher dimensions, this generalizes to neighborhoods of pairs of opposing points along
the surface of the d-sphere; these features provide a coarse approximation to vector magnitude.
Performance degradation with d occurs because the neighborhoods grow exponentially larger and
less dense (due to fixed Nw and n). Nevertheless, as shown in Figure 1(b), this degradation occurs
much more slowly than that of the Gaussian kernel, which suffers a similar curse of dimensionality
due to its dependence on Euclidean distance. Although somewhat contrived, this example shows that
even in situations with poor base kernels our approach learns a more suitable representation.

4.2 Feature selection and biological sequences

In addition to the computational advantages rendered by the sparsity of q after performing the
optimization (4), we can use this sparsity to gain insights about important features in high-dimensional
datasets; this can act as an efficient filtering mechanism before further investigation. We present
one example of this task, studying an aptamer selection problem [6]. In this task, we are given
n = 2900 nucleotide sequences (aptamers) xi ∈ A81, where A = {A,C,G,T} and labels yi indicate
(thresholded) binding affinity of the aptamer to a molecular target. We create one-hot encoded forms
of k-grams of the sequence, where 1 ≤ k ≤ 5, resulting in d =

∑5
k=1 |A|k(82 − k) = 105,476

6

10
2

10
3

0.14

0.16

0.18

0.2

0.22

0.24

(a) Error vs. D, adult
10

1
10

2
10

3
10

4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Error vs. D, reuters
10

1
10

2
10

3

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c) Error vs. D, buzz

10
2

10
3

10
-1

10
0

10
1

(d) Speedup vs. D, adult
10

1
10

2
10

3
10

4
10

-1

10
0

10
1

10
2

10
3

(e) Speedup vs. D, reuters
10

1
10

2
10

3

10
0

10
1

(f) Speedup vs. D, buzz

Figure 3. Performance analysis on benchmark datasets. The top row shows training and test misclassifi-
cation rates. Our method is denoted as OK and is shown in red. The blue methods are random features
with Gaussian, linear, or arc-cosine kernels (GK, LK, or ACK respectively). Our error and running
time become fixed above D = nnz(q̂) after which we employ estimator (6). The bottom row shows the
speedup factor of using our method over regular random features (speedup = x indicates our method
takes 1/x of the time required to use regular random features). Our method is faster at moderate to large
D and shows better performance than the random feature approach at small to moderate D.

Table 1: Best test results over benchmark datasets

Dataset n, ntest d Model Our error (%), time(s) Random error (%), time(s)
adult 32561, 16281 123 Logistic 15.54, 3.6 15.44, 43.1

reuters 23149, 781265 47236 Ridge 9.27, 0.8 9.36, 295.9
buzz 105530, 35177 77 Ridge 4.92, 2.0 4.58, 11.9

features. We consider the linear kernel, i.e. φ(x,w) = xw, where w ∼ Uni({1, . . . , d}). Figure 2(a)
compares the misclassification error of our method with that of random k-gram features, while Figure
2(b) indicates the weights qi given to features by our method. In under 0.2 seconds, we whittle down
the original feature space to 379 important features. By restricting random selection to just these
features, we outperform the approach of selecting features uniformly at random when D � d. More
importantly, however, we can derive insights from this selection. For example, the circled features in
Figure 2(b) correspond to k-gram prefixes for the 5-grams GGTTG and GTTGG at indices 60 through
64; G-complexes are known to be relevant for binding affinities in aptamers [6], so this is reasonable.

4.3 Performance on benchmark datasets

We now show the benefits of our approach on large-scale datasets, since we exploit the efficiency
of random features with the performance of kernel-learning techniques. We perform experiments
on three distinct types of datasets, tracking training/test error rates as well as total (training + test)
time. For the adult2 dataset we employ the Gaussian kernel with a logistic regression model, and
for the reuters3 dataset we employ a linear kernel with a ridge regression model. For the buzz4

dataset we employ ridge regression with an arc-cosine kernel of order 2, i.e. P0 = N (0, I) and
φ(x,w) = H(wTx)(wTx)2, where H(·) is the Heavyside step function [7].

2https://archive.ics.uci.edu/ml/datasets/Adult
3http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm. We con-

sider predicting whether a document has a CCAT label.
4http://ama.liglab.fr/data/buzz/classification/. We use the Twitter dataset.

7

Table 2: Comparisons with joint optimization on subsampled data
Dataset Our training / test error (%), time(s) Joint training / test error (%), time(s)
adult 16.22 / 16.36, 1.8 14.88 / 16.31, 198.1

reuters 7.64 / 9.66, 0.6 6.30 / 8.96, 173.3
buzz 8.44 / 8.32, 0.4 7.38 / 7.08, 137.5

Comparison with unoptimized random features Results comparing our method with unopti-
mized random features are shown in Figure 3 for many values of D, and Table 1 tabulates the best
test error and corresponding time for the methods. Our method outperforms the original random
feature approach in terms of generalization error for small and moderate values of D; at very large D
the random feature approach either matches our surpasses our performance. The trends in speedup
are opposite: our method requires extra optimizations that dominate training time at extremely small
D; at very large D we use estimator (6), so our method requires less overall time. The nonmonotonic
behavior for reuters (Figure 3(e)) occurs due to the following: at D . nnz(q̂), sampling indices
from the optimized distribution takes a non-neglible fraction of total time, and solving the linear
system requires more time when rows of Φ are not unique (due to sampling).

Performance improvements also depend on the kernel choice for a dataset. Namely, our method
provides the most improvement, in terms of training time for a given amount of generalization error,
over random features generated for the linear kernel on the reuters dataset; we are able to surpass
the best results of the random feature approach 2 orders of magnitude faster. This makes sense when
considering the ability of our method to sample from a small subset of important features. On the
other hand, random features for the arc-cosine kernel are able to achieve excellent results on the
buzz dataset even without optimization, so our approach only offers modest improvement at small to
moderate D. For the Gaussian kernel employed on the adult dataset, our method is able to achieve
the same generalization performance as random features in roughly 1/12 the training time.

Thus, we see that our optimization approach generally achieves competitive results with random
features at lower computational costs, and it offers the most improvements when either the base
kernel is not well-suited to the data or requires a large number of random features (large D) for good
performance. In other words, our method reduces the sensitivity of model performance to the user’s
selection of base kernels.

Comparison with joint optimization Despite the fact that we do not choose empirical risk as our
objective in optimizing kernel compositions, our optimized kernel enjoys competitive generalization
performance compared to the joint optimization procedure (9). Because the joint optimization is
very costly, we consider subsampled training datasets of 5000 training examples. Results are shown
in Table 2, where it is evident that the efficiency of our method outweighs the marginal gain in
classification performance for joint optimization.

5 Conclusion

We have developed a method to learn a kernel in a supervised manner using random features. Although
we consider a kernel alignment problem similar to other approaches in the literature, we exploit
computational advantages offered by random features to develop a much more efficient and scalable
optimization procedure. Our concentration bounds guarantee the results of our optimization procedure
closely match the limits of infinite data (n→∞) and sampling (Nw →∞), and our method produces
models that enjoy good generalization performance guarantees. Empirical evaluations indicate that
our optimized kernels indeed “learn” structure from data, and we attain competitive results on
benchmark datasets at a fraction of the training time for other methods. Generalizing the theoretical
results for concentration and risk to other f−divergences is the subject of further research. More
broadly, our approach opens exciting questions regarding the usefulness of simple optimizations on
random features in speeding up other traditionally expensive learning problems.

Acknowledgements This research was supported by a Fannie & John Hertz Foundation Fellowship
and a Stanford Graduate Fellowship.

8

References
[1] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results.

The Journal of Machine Learning Research, 3:463–482, 2003.
[2] A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein–protein interactions. Bioinformatics,

21(suppl 1):i38–i46, 2005.
[3] A. Ben-Tal, D. den Hertog, A. D. Waegenaere, B. Melenberg, and G. Rennen. Robust solutions of

optimization problems affected by uncertain probabilities. Management Science, 59(2):341–357, 2013.
[4] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[5] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: a Nonasymptotic Theory of

Independence. Oxford University Press, 2013.
[6] M. Cho, S. S. Oh, J. Nie, R. Stewart, M. Eisenstein, J. Chambers, J. D. Marth, F. Walker, J. A. Thomson,

and H. T. Soh. Quantitative selection and parallel characterization of aptamers. Proceedings of the National
Academy of Sciences, 110(46), 2013.

[7] Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in neural information processing
systems, pages 342–350, 2009.

[8] C. Cortes, M. Mohri, and A. Rostamizadeh. Generalization bounds for learning kernels. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pages 247–254, 2010.

[9] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on centered alignment.
The Journal of Machine Learning Research, 13(1):795–828, 2012.

[10] N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On kernel target alignment. In Innovations in
Machine Learning, pages 205–256. Springer, 2006.

[11] J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the `1-ball for learning
in high dimensions. In Proceedings of the 25th International Conference on Machine Learning, 2008.

[12] D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Structure discovery in
nonparametric regression through compositional kernel search. arXiv preprint arXiv:1302.4922, 2013.

[13] M. Girolami and S. Rogers. Hierarchic bayesian models for kernel learning. In Proceedings of the 22nd
international conference on Machine learning, pages 241–248. ACM, 2005.

[14] M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. The Journal of Machine Learning
Research, 12:2211–2268, 2011.

[15] G. E. Hinton and R. R. Salakhutdinov. Using deep belief nets to learn covariance kernels for gaussian
processes. In Advances in neural information processing systems, pages 1249–1256, 2008.

[16] J. Kandola, J. Shawe-Taylor, and N. Cristianini. Optimizing kernel alignment over combinations of kernel.
2002.

[17] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Lp-norm multiple kernel learning. The Journal of
Machine Learning Research, 12:953–997, 2011.

[18] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of
combined classifiers. Annals of Statistics, pages 1–50, 2002.

[19] V. Koltchinskii, D. Panchenko, et al. Complexities of convex combinations and bounding the generalization
error in classification. The Annals of Statistics, 33(4):1455–1496, 2005.

[20] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with
semidefinite programming. The Journal of Machine Learning Research, 5:27–72, 2004.

[21] Q. Le, T. Sarlós, and A. Smola. Fastfood-computing hilbert space expansions in loglinear time. In
Proceedings of the 30th International Conference on Machine Learning, pages 244–252, 2013.

[22] D. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.
[23] S. Qiu and T. Lane. A framework for multiple kernel support vector regression and its applications to

sirna efficacy prediction. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 6(2):
190–199, 2009.

[24] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems 20, 2007.

[25] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: replacing minimization with randomiza-
tion in learning. In Advances in Neural Information Processing Systems 21, 2008.

[26] P. Samson. Concentration of measure inequalities for Markov chains and φ-mixing processes. Annals of
Probability, 28(1):416–461, 2000.

[27] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,
2004.

[28] Y. Ying, K. Huang, and C. Campbell. Enhanced protein fold recognition through a novel data integration
approach. BMC bioinformatics, 10(1):1, 2009.

[29] A. Zien and C. S. Ong. Multiclass multiple kernel learning. In Proceedings of the 24th international
conference on Machine learning, pages 1191–1198. ACM, 2007.

9

