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Abstract

Generative Adversarial Networks (GANs) have recently demonstrated the capa-
bility to synthesize compelling real-world images, such as room interiors, album
covers, manga, faces, birds, and flowers. While existing models can synthesize
images based on global constraints such as a class label or caption, they do not
provide control over pose or object location. We propose a new model, the Gen-
erative Adversarial What-Where Network (GAWWN), that synthesizes images
given instructions describing what content to draw in which location. We show
high-quality 128× 128 image synthesis on the Caltech-UCSD Birds dataset, con-
ditioned on both informal text descriptions and also object location. Our system
exposes control over both the bounding box around the bird and its constituent
parts. By modeling the conditional distributions over part locations, our system
also enables conditioning on arbitrary subsets of parts (e.g. only the beak and tail),
yielding an efficient interface for picking part locations.

1 Introduction
Generating realistic images from informal descriptions would have a wide range of applications.
Modern computer graphics can already generate remarkably realistic scenes, but it still requires the
substantial effort of human designers and developers to bridge the gap between high-level concepts
and the end product of pixel-level details. Fully automating this creative process is currently out of
reach, but deep networks have shown a rapidly-improving ability for controllable image synthesis.

In order for the image-generating system to be useful, it should support high-level control over the
contents of the scene to be generated. For example, a user might provide the category of image to be
generated, e.g. “bird”. In the more general case, the user could provide a textual description like “a
yellow bird with a black head”.

Compelling image synthesis with this level of control has already been demonstrated using convo-
lutional Generative Adversarial Networks (GANs) [Goodfellow et al., 2014, Radford et al., 2016].
Variational Autoencoders also show some promise for conditional image synthesis, in particular
recurrent versions such as DRAW [Gregor et al., 2015, Mansimov et al., 2016]. However, current
approaches have so far only used simple conditioning variables such as a class label or a non-localized
caption [Reed et al., 2016b], and did not allow for controlling where objects appear in the scene.

To generate more realistic and complex scenes, image synthesis models can benefit from incorporating
a notion of localizable objects. The same types of objects can appear in many locations in different
scales, poses and configurations. This fact can be exploited by separating the questions of “what”
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and “where” to modify the image at each step of computation. In addition to parameter efficiency,
this yields the benefit of more interpretable image samples, in the sense that we can track what the
network was meant to depict at each location.

Beak

Belly

This bird is bright blue.
Right leg

This bird is completely black.

Head

a man in an orange jacket, black pants and a black cap wearing sunglasses skiing

Figure 1: Text-to-image examples. Locations can
be specified by keypoint or bounding box.

For many image datasets, we have not only
global annotations such as a class label but
also localized annotations, such as bird part
keypoints in Caltech-USCD birds (CUB) [Wah
et al., 2011] and human joint locations in the
MPII Human Pose dataset (MHP) [Andriluka
et al., 2014]. For CUB, there are associated
text captions, and for MHP we collected a new
dataset of 3 captions per image.

Our proposed model learns to perform location-
and content-controllable image synthesis on the
above datasets. We demonstrate two ways to
encode spatial constraints (though there could
be many more). First, we show how to condi-
tion on the coarse location of a bird by incor-
porating spatial masking and cropping modules
into a text-conditional GAN, implemented using spatial transformers. Second, we can condition
on part locations of birds and humans in the form of a set of normalized (x,y) coordinates, e.g.
beak@(0.23,0.15). In the second case, the generator and discriminator use a multiplicative gating
mechanism to attend to the relevant part locations.

The main contributions are as follows: (1) a novel architecture for text- and location-controllable
image synthesis, yielding more realistic and higher-resolution CUB samples, (2) a text-conditional
object part completion model enabling a streamlined user interface for specifying part locations, and
(3) exploratory results and a new dataset for pose-conditional text to human image synthesis.

2 Related Work
In addition to recognizing patterns within images, deep convolutional networks have shown remark-
able capability to generate images. Dosovitskiy et al. [2015] trained a deconvolutional network to
generate 3D chair renderings conditioned on a set of graphics codes indicating shape, position and
lighting. Yang et al. [2015] followed with a recurrent convolutional encoder-decoder that learned
to apply incremental 3D rotations to generate sequences of rotated chair and face images. Oh et al.
[2015] used a similar approach in order to predict action-conditional future frames of Atari games.
Reed et al. [2015] trained a network to generate images that solved visual analogy problems.

The above models were all deterministic (i.e. conventional feed-forward and recurrent neural
networks), trained to learn one-to-one mappings from the latent space to pixel space. Other recent
works take the approach of learning probabilistic models with variational autoencoders [Kingma and
Welling, 2014, Rezende et al., 2014]. Kulkarni et al. [2015] developed a convolutional variational
autoencoder in which the latent space was “disentangled” into separate blocks of units corresponding
to graphics codes. Gregor et al. [2015] created a recurrent variational autoencoder with attention
mechanisms for reading and writing portions of the image canvas at each time step (DRAW).

In addition to VAE-based image generation models, simple and effective Generative Adversarial
Networks [Goodfellow et al., 2014] have been increasingly popular. In general, GAN image samples
are notable for their relative sharpness compared to samples from the contemporary VAE models.
Later, class-conditional GAN [Denton et al., 2015] incorporated a Laplacian pyramid of residual
images into the generator network to achieve a significant qualitative improvement. Radford et al.
[2016] proposed ways to stabilize deep convolutional GAN training and synthesize compelling
images of faces and room interiors.

Spatial Transformer Networks (STN) [Jaderberg et al., 2015] have proven to be an effective visual
attention mechanism, and have already been incorporated into the latest deep generative models.
Eslami et al. [2016] incorporate STNs into a form of recurrent VAE called Attend, Infer, Repeat (AIR),
that uses an image-dependent number of inference steps, learning to generate simple multi-object
2D and 3D scenes. Rezende et al. [2016] build STNs into a DRAW-like recurrent network with
impressive sample complexity visual generalization properties.
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Larochelle and Murray [2011] proposed the Neural Autoregressive Density Estimator (NADE) to
tractably model distributions over image pixels as a product of conditionals. Recently proposed
spatial grid-structured recurrent networks [Theis and Bethge, 2015, van den Oord et al., 2016] have
shown encouraging image synthesis results. We use GANs in our approach, but the same principle of
separating “what” and “where” conditioning variables can be applied to these types of models.

3 Preliminaries
3.1 Generative Adversarial Networks

Generative adversarial networks (GANs) consist of a generator G and a discriminator D that compete
in a two-player minimax game. The discriminator’s objective is to correctly classify its inputs as
either real or synthetic. The generator’s objective is to synthesize images that the discriminator will
classsify as real. D and G play the following game with value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ex∼pz(z)[log(1−D(G(z)))]

where z is a noise vector drawn from e.g. a Gaussian or uniform distribution. Goodfellow et al.
[2014] showed that this minimax game has a global optimium precisely when pg = pdata, and that
when G and D have enough capacity, pg converges to pdata.

To train a conditional GAN, one can simply provide both the generator and discriminator with the
additional input c as in [Denton et al., 2015, Radford et al., 2016] yielding G(z, c) and D(x, c). For
an input tuple (x, c) to be intepreted as “real”, the image x must not only look realistic but also match
its context c. In practice G is trained to maximize logD(G(z, c)).

3.2 Structured joint embedding of visual descriptions and images

To encode visual content from text descriptions, we use a convolutional and recurrent text encoder to
learn a correspondence function between images and text features, following the approach of Reed
et al. [2016a] (and closely related to Kiros et al. [2014]). Sentence embeddings are learned by
optimizing the following structured loss:

1

N

N∑
n=1

∆(yn, fv(vn)) + ∆(yn, ft(tn)) (1)

where {(vn, tn, yn), n = 1, ..., N} is the training data set, ∆ is the 0-1 loss, vn are the images, tn
are the corresponding text descriptions, and yn are the class labels. fv and ft are defined as

fv(v) = arg max
y∈Y

Et∼T (y)[φ(v)Tϕ(t))], ft(t) = arg max
y∈Y

Ev∼V(y)[φ(v)Tϕ(t))] (2)

where φ is the image encoder (e.g. a deep convolutional network), ϕ is the text encoder, T (y) is
the set of text descriptions of class y and likewise V(y) for images. Intuitively, the text encoder
learns to produce a higher compatibility score with images of the correspondong class compared to
any other class, and vice-versa. To train the text encoder we minimize a surrogate loss related to
Equation 1 (see Akata et al. [2015] for details). We modify the approach of Reed et al. [2016a] in a
few ways: using a char-CNN-GRU [Cho et al., 2014] instead of char-CNN-RNN, and estimating the
expectations in Equation 2 using the average of 4 sampled captions per image instead of 1.

4 Generative Adversarial What-Where Networks (GAWWN)
In the following sections we describe the bounding-box- and keypoint-conditional GAWWN models.
4.1 Bounding-box-conditional text-to-image model
Figure 2 shows a sketch of the model, which can be understood by starting from input noise z ∈ RZ

and text embedding t ∈ RT (extracted from the caption by pre-trained 2 encoder ϕ(t)) and following
the arrows. Below we walk through each step.

First, the text embedding (shown in green) is replicated spatially to form a M ×M × T feature
map, and then warped spatially to fit into the normalized bounding box coordinates. The feature map

2Both φ and ϕ could be trained jointly with the GAN, but pre-training allows us to use the best available
image features from higher resolution images (224× 224) and speeds up GAN training.
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entries outside the box are all zeros.3 The diagram shows a single object, but in the case of multiple
localized captions, these feature maps are averaged. Then, convolution and pooling operations are
applied to reduce the spatial dimension back to 1 × 1. Intuitively, this feature vector encodes the
coarse spatial structure in the image, and we concatenate this with the noise vector z.

A red bird 
with a black face

Generator Network Discriminator Network

= Deconv

= Conv

{ 0, 1 }

1
1

16

16

Spatial replicate, 
crop to bbox

Global

Local

depth 
concat
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16

128

128

16

16

16

16

128

128

128
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with a black face
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1

depth 
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Figure 2: GAWWN with bounding box location control.
In the next stage, the generator branches into local and global processing stages. The global pathway
is just a series of stride-2 deconvolutions to increase spatial dimension from 1 × 1 to M ×M . In
the local pathway, upon reaching spatial dimension M ×M , a masking operation is applied so that
regions outside the object bounding box are set to 0. Finally, the local and global pathways are
merged by depth concatenation. A final series of deconvolution layers are used to reach the final
spatial dimension. In the final layer we apply a Tanh nonlinearity to constrain the outputs to [−1, 1].

In the discriminator, the text is similarly replicated spatially to form a M ×M ×T tensor. Meanwhile
the image is processed in local and global pathways. In the local pathway, the image is fed through
stride-2 convolutions down to the M ×M spatial dimension, at which point it is depth-concatenated
with the text embedding tensor. The resulting tensor is spatially cropped to within the bounding box
coordinates, and further processed convolutionally until the spatial dimension is 1× 1. The global
pathway consists simply of convolutions down to a vector, with additive contribution of the orignal
text embedding t. Finally, the local and global pathway output vectors are combined additively and
fed into the final layer producing the scalar discriminator score.
4.2 Keypoint-conditional text-to-image model
Figure 3 shows the keypoint-conditional version of the GAWWN, described in detail below.

Global

Local

Global

A red bird with 
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part 
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Local { 0, 1 }
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A red bird with 
a black face

depth 
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spatial

16

16

Figure 3: Text and keypoint-conditional GAWWN.. Keypoint grids are shown as 4× 4 for clarity of
presentation, but in our experiments we used 16× 16.

The location keypoints are encoded into a M ×M ×K spatial feature map in which the channels
correspond to the part; i.e. head in channel 1, left foot in channel 2, and so on. The keypoint
tensor is fed into several stages of the network. First, it is fed through stride-2 convolutions to produce
a vector that is concatenated with noise z and text embedding t. The resulting vector provides
coarse information about content and part locations. Second, the keypoint tensor is flattened into a
binary matrix with a 1 indicating presence of any part at a particular spatial location, then replicated
depth-wise into a tensor of size M ×M ×H .

In the local and global pathways, the noise-text-keypoint vector is fed through deconvolutions to
produce another M ×M ×H tensor. The local pathway activations are gated by pointwise multipli-
cation with the keypoint tensor of the same size. Finally, the original M ×M ×K keypoint tensor is

3For details of how to apply this warping see equation 3 in [Jaderberg et al., 2015]
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depth-concatenated with the local and global tensors, and processed with further deconvolutions to
produce the final image. Again a Tanh nonlinearity is applied.

In the discriminator, the text embedding t is fed into two stages. First, it is combined additively with
the global pathway that processes the image convolutionally producing a vector output. Second, it
is spatially replicated to M ×M and then depth-concatenated with another M ×M feature map
in the local pathway. This local tensor is then multiplicatively gated with the binary keypoint mask
exactly as in the generator, and the resulting tensor is depth-concatenated with the M ×M × T
keypoints. The local pathway is fed into further stride-2 convolutions to produce a vector, which
is then additively combined with the global pathway output vector, and then into the final layer
producing the scalar discriminator score.

4.3 Conditional keypoint generation model
From a user-experience perspective, it is not optimal to require users to enter every single keypoint of
the parts of the object they wish to be drawn (e.g. for birds our model would require 15). Therefore,
it would be very useful to have access to all of the conditional distributions of unobserved keypoints
given a subset of observed keypoints and the text description. A similar problem occurs in data
imputation, e.g. filling in missing records or inpainting image occlusions. However, in our case we
want to draw convincing samples rather than just fill in the most likely values.

Conditioned on e.g. only the position of a bird’s beak, there could be several very different plausible
poses that satisfy the constraint. Therefore, a simple approach such as training a sparse autoencoder
over keypoints would not suffice. A DBM [Salakhutdinov and Hinton, 2009] or variational autoen-
coder [Rezende et al., 2014] could in theory work, but for simplicity we demonstrate the results
achieved by applying the same generic GAN framework to this problem.

The basic idea is to use the assignment of each object part as observed (i.e. conditioning variable) or
unobserved as a gating mechanism. Denote the keypoints for a single image as ki := {xi, yi, vi}, i =
1, ...,K, where x and y indicate the row and column position, respectively, and v is a bit set to 1 if the
part is visible and 0 otherwise. If the part is not visible, x and y are also set to 0. Let k ∈ [0, 1]K×3

encode the keypoints into a matrix. Let the conditioning variables (e.g. a beak position specified
by the user) be encoded into a vector of switch units s ∈ {0, 1}K , with the i-th entry set to 1 if the
i-th part is a conditioning variable and 0 otherwise. We can formulate the generator network over
keypoints Gk, conditioned on text t and a subset of keypoints k, s, as follows:

Gk(z, t,k, s) := s� k + (1− s)� f(z, t,k) (3)

where � denotes pointwise multiplication and f : RZ+T+3K → R3K is an MLP. In practice we
concatenated z, t and flattened k and chose f to be a 3-layer fully-connected network.

The discriminator Dk learns to distinguish real keypoints and text (kreal, treal) from synthetic.
In order for Gk to capture all of the conditional distributions over keypoints, during training we
randomly sample switch units s in each mini-batch. Since we would like to usually specify 1 or 2
keypoints, in our experiments we set the “on” probability to 0.1. That is, each of the 15 bird parts
only had a 10% chance of acting as a conditioning variable for a given training image.

5 Experiments
In this section we describe our experiments on generating images from text descriptions on the
Caltech-UCSD Birds (CUB) and MPII Human Pose (MHP) datasets.

CUB [Wah et al., 2011] has 11,788 images of birds belonging to one of 200 different species. We also
use the text dataset from Reed et al. [2016a] including 10 single-sentence descriptions per bird image.
Each image also includes the bird location via its bounding box, and keypoint (x,y) coordinates for
each of 15 bird parts. Since not all parts are visible in each image, the keypoint data also provides an
additional bit per part indicating whether the part can be seen.

MHP Andriluka et al. [2014] has 25K images with 410 different common activities. For each image,
we collected 3 single-sentence text descriptions using Mechanical Turk. We asked the workers to
describe the most distinctive aspects of the person and the activity they are engaged in, e.g. “a man
in a yellow shirt preparing to swing a golf club”. Each image has potentially multiple sets of (x,y)
keypoints for each of the 16 joints. During training we filtered out images with multiple people, and
for the remaining 19K images we cropped the image to the person’s bounding box.
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We encoded the captions using a pre-trained char-CNN-GRU as described in [Reed et al., 2016a].
During training, the 1024-dimensional text embedding for a given image was taken to be the average
of four randomly-sampled caption encodings corresponding to that image. Sampling multiple captions
per image provides further information required to draw the object. At test time one can average
together any number of description embeddings, including a single caption.

For both CUB and MHP, we trained our GAWWN using the ADAM solver with batch size 16 and
learning rate 0.0002 (See Alg. 1 in [Reed et al., 2016b] for the conditional GAN training algorithm).
The models were trained on all categories and we show samples on a set of held out captions. For the
spatial transformer module, we used a Torch implementation provided by Oquab [2016]. Our GAN
implementation is loosely based on dcgan.torch4.

In experiments we analyze how accurately the GAWWN samples reflect the text and location
constraints. First we control the location of the bird by interpolation via bounding boxes and
keypoints. We consider both the case of (1) ground-truth keypoints from the data set, and (2) synthetic
keypoints generated by our model, conditioned on the text. Case (2) is advantageous because it
requires less effort from a hypothetical user (i.e. entering 15 keypoint locations). We then compare
our CUB results to representative samples from the previous work. Finally, we show samples on text-
and pose-conditional generation of images of human actions.

5.1 Controlling bird location via bounding boxes
We first demonstrate sampling from the text-conditional model while varying the bird location. Since
location is specified via bounding box coordinates, we can also control the size and aspect ratio of
the bird. This is shown in Figure 4 by interpolating the bounding box coordinates while at the same
time fixing the text and noise conditioning variables.

This bird has 
a black head, 
a long orange 
beak and 
yellow body

This large 
black bird has 
a pointy beak 
and black eyes

This small blue 
bird has a 
short pointy 
beak and 
brown patches 
on its wings

Caption Shrinking Translation StretchingGT

Figure 4: Controlling the bird’s position using bounding box coordinates. and previously-unseen text.

With the noise vector z fixed in every set of three frames, the background is usually similar but not
perfectly invariant. Interestingly, as the bounding box coordinates are changed, the direction the bird
faces does not change. This suggests that the model learns to use the the noise distribution to capture
some aspects of the background and also non-controllable aspects of “where” such as direction.

5.2 Controlling individual part locations via keypoints
In this section we study the case of text-conditional image generation with keypoints fixed to the
ground-truth. This can give a sense of the performance upper bound for the text to image pipeline,
because synthetic keypoints can be no more realistic than the ground-truth. We take a real image and
its keypoint annotations from the CUB dataset, and a held-out text description, and draw samples
conditioned on this information.

This large black bird has a long neck and tail 
feathers.

This bird is mostly white with a thick black 
eyebrow, small and black beak and a long tail.

This is a small yellowish green bird with a pointy 
black beak, black eyes and gray wings.

This pale pink bird has a black eyebrow and a 
black pointy beak, gray wings and yellow underparts.

This bird has a bright red crown and black 
wings and beak.This large white bird has an orange-tipped beak.

GT

GT

GT

GT

GT

GT

Figure 5: Bird generation conditioned on fixed groundtruth keypoints (overlaid in blue) and previously
unseen text. Each sample uses a different random noise vector.

4https://github.com/soumith/dcgan.torch
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Figure 5 shows several image samples that accurately reflect the text and keypoint constraints. More
examples including success and failure are included in the supplement. We observe that the bird pose
respects the keypoints and is invariant across the samples. The background and other small details,
such as thickness of the tree branch or the background color palette do change with the noise.

Shrinking Translation Stretching

This bird has 
a black head, 
a long orange 
beak and 
yellow body

This large 
black bird has 
a pointy beak 
and black eyes

This small blue 
bird has a 
short pointy 
beak and 
brown patches 
on its wings

Caption GT

Figure 6: Controlling the bird’s position using keypoint coordinates. Here we only interpolated the
beak and tail positions, and sampled the rest conditioned on these two.

The GAWWN model can also use keypoints to shrink, translate and stretch objects, as shown
in Figure 6. We chose to specify beak and tail positions, because in most cases these define an
approximate bounding box around the bird.

Unlike in the case of bounding boxes, we can now control which way the bird is pointing; note that
here all birds face left, whereas when we use bounding boxes (Figure 4) the orientation is random.
Elements of the scene, even outside of the controllable location, adjust in order to be coherent with
the bird’s position in each frame although in each set of three frames we use the same noise vector z.

5.3 Generating both bird keypoints and images from text alone
Although ground truth keypoint locations lead to visually plausible results as shown in the previous
sections, the keypoints are costly to obtain. In Figure 7, we provide examples of accurate samples
using generated keypoints. Compared to ground-truth keypoints, on average we did not observe
degradation in quality. More examples for each regime are provided in the supplement.

This bird has a yellow head, black eyes, a gray 
pointy beak and orange lines on its breast.

This water bird has a long white neck, 
black body, yellow beak and black head.

This bird is large, completely black, with a 
long pointy beak and black eyes.

This small bird has a blue and gray head, 
pointy beak, black and white patterns on its 
wings and a white belly.

This bird is completely red with a red and 
cone-shaped beak, black face and a red nape.

This white bird has gray wings, red webbed 
feet and a long, curved and yellow beak.

This small bird has a blue and gray head, 
pointy beak and a white belly.

GT

GT

GT

GT

GT

GT

Figure 7: Keypoint- and text-conditional bird generation in which the keypoints are generated
conditioned on unseen text. The small blue boxes indicate the generated keypoint locations.

5.4 Comparison to previous work

In this section we compare our results with previous text-to-image results on CUB. In Figure 8 we
show several representative examples that we cropped from the supplementary material of [Reed et al.,
2016b]. We compare against the actual ground-truth and several variants of GAWWN. We observe
that the 64× 64 samples from [Reed et al., 2016b] mostly reflect the text description, but in some
cases lack clearly defined parts such as a beak. When the keypoints are zeroed during training, our
GAWWN architecture actually fails to generate any plausible images. This suggests that providing
additional conditioning variables in the form of location constraints is helpful for learning to generate
high-resolution images. Overall, the sharpest and most accurate results can be seen in the 128× 128
samples from our GAWWN with real or synthetic keypoints (bottom two rows).

5.5 Beyond birds: generating images of humans
Here we apply our model to generating images of humans conditioned on a description of their
appearance and activity, and also on their approximate pose. This is a much more challenging task
than generating images of birds due to the larger variety of scenes and pose configurations.
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A small sized bird that 
has tones of brown and 
dark red with a short 
stout bill

GAN-INT-CLS
(Reed et. al, 

2016b)

Ground-
truth image 

and text 
caption

GAWWN
Key points 

given

GAWWN
Key points 
generated

This bird has a yellow 
breast and a dark grey 
face

The bird is solid black with 
white eyes and a black 
beak.

GAWWN
trained 

without key 
points

Figure 8: Comparison of GAWWN to GAN-INT-CLS from Reed et al. [2016b] and also the ground-
truth images. For the ground-truth row, the first entry corresonds directly to the caption, and the
second two entries are sampled from the same species.

a woman in a yellow 
tank top is doing yoga.

the man wearing the red 
shirt and white pants 
play golf on the green 
grass

a man in green shirt 
and white pants is 
swinging his golf club.

a man in a red sweater 
and grey pants swings a 
golf club with one hand.

a woman in grey shirt 
is doing yoga.

a man in an orange 
jacket, black pants and a 
black cap wearing 
sunglasses skiing.

a man is skiing and 
competing for the 
olympics on the slopes.

a woman wearing  
goggles swimming 
through very murky 
water

GT Samples GT SamplesCaption Caption

Figure 9: Generating humans. Both the keypoints and the image are generated from unseen text.

The human image samples shown in Figure 9 tend to be much blurrier compared to the bird images,
but in many cases bear a clear resemblance to the text query and the pose constraints. Simple captions
involving skiing, golf and yoga tend to work, but complex descriptions and unusual poses (e.g.
upside-down person on a trampoline) remain especially challenging. We also generate videos by
(1) extracting pose keypoints from a pre-trained pose estimator from several YouTube clips, and
(2) combining these keypoint trajectories with a text query, fixing the noise vector z over time and
concatenating the samples (see supplement).

6 Discussion
In this work we showed how to generate images conditioned on both informal text descriptions and
object locations. Locations can be accurately controlled by either bounding box or a set of part
keypoints. On CUB, the addition of a location constraint allowed us to accurately generate compelling
128× 128 images, whereas previous models could only generate 64× 64. Furthermore, this location
conditioning does not constrain us during test time, because we can also learn a text-conditional
generative model of part locations, and simply generate them at test time.

An important lesson here is that decomposing the problem into easier subproblems can help generate
realistic high-resolution images. In addition to making the overall text to image pipeline easier to
train with a GAN, it also yields additional ways to control image synthesis. In future work, it may
be promising to learn the object or part locations in an unsupervised or weakly supervised way. In
addition, we show the first text-to-human image synthesis results, but performance on this task is
clearly far from saturated and further architectural advances will be required to solve it.

Acknowledgements This work was supported in part by NSF CAREER IIS-1453651, ONR
N00014-13-1-0762, and a Sloan Research Fellowship.
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