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Abstract

We introduce the Multiple Quantile Graphical Model (MQGM), which extends
the neighborhood selection approach of Meinshausen and Bühlmann for learning
sparse graphical models. The latter is defined by the basic subproblem of model-
ing the conditional mean of one variable as a sparse function of all others. Our
approach models a set of conditional quantiles of one variable as a sparse function
of all others, and hence offers a much richer, more expressive class of conditional
distribution estimates. We establish that, under suitable regularity conditions, the
MQGM identifies the exact conditional independencies with probability tending to
one as the problem size grows, even outside of the usual homoskedastic Gaussian
data model. We develop an efficient algorithm for fitting the MQGM using the
alternating direction method of multipliers. We also describe a strategy for sam-
pling from the joint distribution that underlies the MQGM estimate. Lastly, we
present detailed experiments that demonstrate the flexibility and effectiveness of
the MQGM in modeling hetereoskedastic non-Gaussian data.

1 Introduction

We consider modeling the joint distribution Pr(y1, . . . , yd) of d random variables, given n indepen-
dent draws from this distribution y(1), . . . , y(n) ∈ Rd, where possibly d� n. Later, we generalize
this setup and consider modeling the conditional distribution Pr(y1, . . . , yd|x1, . . . , xp), given n
independent pairs (x(1), y(1)), . . . , (x(n), y(n)) ∈ Rp+d. Our starting point is the neighborhood selec-
tion method [28], which is typically considered in the context of multivariate Gaussian data, and seen
as a tool for covariance selection [8]: when Pr(y1, . . . , yd) is a multivariate Gaussian distribution,
it is a well-known fact that yj and yk are conditionally independent given the remaining variables
if and only if the coefficent corresponding to yk is zero in the (linear) regression of yj on all other
variables (e.g., [22]). Therefore, in neighborhood selection we compute, for each k = 1, . . . , d,
a lasso regression — in order to obtain a small set of conditional dependencies — of yk on the
remaining variables, i.e.,

minimize
θk∈Rd

n∑
i=1

(
y

(i)
k −

∑
j 6=k

θkjy
(i)
j

)2

+ λ‖θk‖1, (1)

for a tuning parameter λ > 0. This strategy can be seen as a pseudolikelihood approximation [4],

Pr(y1, . . . , yd) ≈
d∏
k=1

Pr(yk|y¬k), (2)

where y¬k denotes all variables except yk. Under the multivariate Gaussian model for Pr(y1, . . . , yd),
the conditional distributions Pr(yk|y¬k), k = 1, . . . , d here are (univariate) Gaussians, and maximiz-
ing the pseudolikelihood in (2) is equivalent to separately maximizing the conditionals, as is precisely
done in (1) (with induced sparsity), for k = 1, . . . , d.
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Following the pseudolikelihood-based approach traditionally means carrying out three steps: (i) we
write down a suitable family of joint distributions for Pr(y1, . . . , yd), (ii) we derive the conditionals
Pr(yk|y¬k), k = 1, . . . , d, and then (iii) we maximize each conditional likelihood by (freely) fitting
the parameters. Neighborhood selection, and a number of related approaches that came after it (see
Section 2.1), can be all thought of in this workflow. In many ways, step (ii) acts as the bottleneck
here, and to derive the conditionals, we are usually limited to a homoskedastic and parameteric family
for the joint distribution.

The approach we take in this paper differs somewhat substantially, as we begin by directly modeling
the conditionals in (2), without any preconceived model for the joint distribution — in this sense, it
may be seen a type of dependency network [13] for continuous data. We also employ heteroskedastic,
nonparametric models for the conditional distributions, which allows us great flexibility in learning
these conditional relationships. Our method, called the Multiple Quantile Graphical Model (MQGM),
is a marriage of ideas in high-dimensional, nonparametric, multiple quantile regression with those in
the dependency network literature (the latter is typically focused on discrete, not continuous, data).

An outline for this paper is as follows. Section 2 reviews background material, and Section 3 develops
the MQGM estimator. Section 4 studies basic properties of the MQGM, and establishes a structure
recovery result under appropriate regularity conditions, even for heteroskedastic, non-Gaussian data.
Section 5 describes an efficient ADMM algorithm for estimation, and Section 6 presents empirical
examples comparing the MQGM versus common alternatives. Section 7 concludes with a discussion.

2 Background

2.1 Neighborhood selection and related methods

Neighborhood selection has motivated a number of methods for learning sparse graphical models. The
literature here is vast; we do not claim to give a complete treatment, but just mention some relevant
approaches. Many pseudolikelihood approaches have been proposed, see e.g., [35, 33, 12, 24, 17, 1].
These works exploit the connection between estimating a sparse inverse covariance matrix and regres-
sion, and they vary in terms of the optimization algorithms they use and the theoretical guarantees
they offer. In a clearly related but distinct line of research, [45, 2, 11, 36] proposed `1-penalized
likelihood estimation in the Gaussian graphical model, a method now generally termed the graphical
lasso (GLasso). Following this, several recent papers have extended the GLasso in various ways. [10]
examined a modification based on the multivariate Student t-distribution, for robust graphical model-
ing. [37, 46, 42] considered conditional distributions of the form Pr(y1, . . . , yd|x1, . . . , xp). [23]
proposed a model for mixed (both continuous and discrete) data types, generalizing both GLasso and
pairwise Markov random fields. [25, 26] used copulas for learning non-Gaussian graphical models.

A strength of neighborhood-based (i.e., pseudolikelihood-based) approaches lies in their simplicity;
because they essentially reduce to a collection of univariate probability models, they are in a sense
much easier to study outside of the typical homoskedastic, Gaussian data setting. [14, 43, 44] ele-
gantly studied the implications of using univariate exponential family models for the conditionals in
(2). Closely related to pseudoliklihood approaches are dependency networks [13]. Both frameworks
focus on the conditional distributions of one variable given all the rest; the difference lies in whether
or not the model for conditionals stems from first specifying some family of joint distributions (pseu-
dolikelihood methods), or not (dependency networks). Dependency networks have been thoroughly
studied for discrete data, e.g., [13, 29]. For continuous data, [40] proposed modeling the mean in a
Gaussian neighborhood regression as a nonparametric, additive function of the remaining variables,
yielding flexible relationships — this is a type of dependency network for continuous data (though it
is not described by the authors in this way). Our method, the MQGM, also deals with continuous
data, and is the first to our knowledge that allows for fully nonparametric conditional distributions, as
well as nonparametric contributions of the neighborhood variables, in each local model.

2.2 Quantile regression

In linear regression, we estimate the conditional mean of y|x1, . . . , xp from samples. Similarly, in α-
quantile regression [20], we estimate the conditional α-quantile of y|x1, . . . , xp for a given α ∈ [0, 1],
formally Qy|x1,...,xp

(α) = inf{t : Pr(y ≤ t|x1, . . . , xp) ≥ α}, by solving the convex optimization
problem: minimizeθ

∑n
i=1 ψα(y(i) −

∑p
j=1 θjx

(i)
j ), where ψα(z) = max{αz, (α− 1)z} is the α-
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quantile loss (also called the “pinball” or “tilted absolute” loss). Quantile regression can be useful
when the conditional distribution in question is suspected to be heteroskedastic and/or non-Gaussian,
e.g., heavy-tailed, or if we wish to understand properties of the distribution other than the mean,
e.g., tail behavior. In multiple quantile regression, we solve several quantile regression problems
simultaneously, each corresponding to a different quantile level; these problems can be coupled
somehow to increase efficiency in estimation (see details in the next section). Again, the literature
on quantile regression is quite vast (especially that from econometrics), and we only give a short
review here. A standard text is [18]. Nonparametric modeling of quantiles is a natural extension from
the (linear) quantile regression approach outlined above; in the univariate case (one conditioning
variable), [21] suggested a method using smoothing splines, and [38] described an approach using
kernels. More recently, [19] studied the multivariate nonparametric case (more than one conditioning
variable), using additive models. In the high-dimensional setting, where p is large, [3, 16, 9] studied
`1-penalized quantile regression and derived estimation and recovery theory for non-(sub-)Gaussian
data. We extend results in [9] to prove structure recovery guarantees for the MQGM (in Section 4.3).

3 The multiple quantile graphical model

Many choices can be made with regards to the final form of the MQGM, and to help in understanding
these options, we break down our presentation in parts. First fix some ordered set A = {α1, . . . , αr}
of quantile levels, e.g., A = {0.05, 0.10, . . . , 0.95}. For each variable yk, and each level α`, we
model the conditional α`-quantile given the other variables, using an additive expansion of the form:

Qyk|y¬k
(α`) = b∗`k +

d∑
j 6=k

f∗`kj(yj), (3)

where b∗`k ∈ R is an intercept term, and f∗`kj , j = 1, . . . , d are smooth, but not parametric in form. In
its most general form, the MQGM estimator is defined as a collection of optimization problems, over
k = 1, . . . , d and ` = 1, . . . , r:

minimize
b`k, f`kj∈F`kj ,

j=1,...,d

n∑
i=1

ψα`

(
y

(i)
k − b`k −

∑
j 6=k

f`kj(y
(i)
j )

)
+
∑
j 6=k

(
λ1P1(f`kj) + λ2P2(f`kj)

)ω
. (4)

Here λ1, λ2 ≥ 0 are tuning parameters, F`kj , j = 1, . . . , d are univariate function spaces, ω > 0 is
a fixed exponent, and P1, P2 are sparsity and smoothness penalty functions, respectively. We give
three examples below; many other variants are also possible.

Example 1: basis expansion model Consider taking F`kj = span{φj1, . . . , φjm}, the span of m
basis functions, e.g., radial basis functions (RBFs) with centers placed at appropriate locations across
the domain of variable j, for each j = 1, . . . , d. This means that each f`kj ∈ F`kj can be expressed
as f`kj(x) = θT`kjφ

j(x), for a coefficient vector θ`kj ∈ Rm, where φj(x) = (φj1(x), . . . , φjm(x)).
Also consider an exponent ω = 1, and the sparsity and smoothness penalties

P1(f`kj) = ‖θ`kj‖2 and P2(f`kj) = ‖θ`kj‖22,
respectively, which are group lasso and ridge penalties, respectively. With these choices in place, the
MQGM problem in (4) can be rewritten in finite-dimensional form:

minimize
b`k, θ`k=(θ`k1,...,θ`kd)

ψα`

(
Yk − b`k1− Φθ`k

)
+
∑
j 6=k

(
λ1‖θ`kj‖2 + λ2‖θ`kj‖22

)
. (5)

Above, we have used the abbreviation ψα`
(z) =

∑n
i=1 ψα`

(zi) for a vector z = (z1, . . . , zn) ∈ Rn,
and also Yk = (y

(1)
k , . . . , y

(n)
k ) ∈ Rn for the observations along variable k, 1 = (1, . . . , 1) ∈ Rn, and

Φ ∈ Rn×dm for the basis matrix, with blocks of columns to be understood as Φij = φ(y
(i)
j )T ∈ Rm.

The basis expansion model is simple and tends to work well in practice, so we focus on it for most of
the paper. In principle, essentially all our results apply to the next two models we describe, as well.

Example 2: smoothing splines model Now consider taking F`kj = span{gj1, . . . , gjn}, the span
of m = n natural cubic splines with knots at y(1)

j , . . . , y
(n)
j , for j = 1, . . . , d. As before, we can

then write f`kj(x) = θT`kjg
j(x) with coefficients θ`kj ∈ Rn, for f`kj ∈ F`kj . The work of [27], on

high-dimensional additive smoothing splines, suggests a choice of exponent ω = 1/2, and penalties

P1(f`kj) = ‖Gjθ`kj‖22 and P2(f`kj) = θT`kjΩ
jθ`kj ,
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for sparsity and smoothness, respectively, where Gj ∈ Rn×n is a spline basis matrix with entries
Gjii′ = gji′(y

(i)
j ), and Ωj is the smoothing spline penalty matrix containing integrated products of

pairs of twice differentiated basis functions. The MQGM problem in (4) can be translated into a
finite-dimensional form, very similar to what we have done in (5), but we omit this for brevity.

Example 3: RKHS model Consider taking F`kj = Hj , a univariate reproducing kernel Hilbert
space (RKHS), with kernel function κj(·, ·). The representer theorem allows us to express each
function f`kj ∈ Hj in terms of the representers of evaluation, i.e., f`kj(x) =

∑n
i=1(θ`kj)iκ

j(x, y
(i)
j ),

for a coefficient vector θ`kj ∈ Rn. The work of [34], on high-dimensional additive RKHS modeling,
suggests a choice of exponent ω = 1, and sparsity and smoothness penalties

P1(f`kj) = ‖Kjθ`kj‖2 and P2(f`kj) =
√
θT`kjK

jθ`kj ,

respectively, where Kj ∈ Rn×n is the kernel matrix with entries Kj
ii′ = κj(y

(i)
j , y

(i′)
j ). Again, the

MQGM problem in (4) can be written in finite-dimensional form, now an SDP, omitted for brevity.

Structural constraints Several structural constraints can be placed on top of the MQGM op-
timization problem in order to guide the estimated component functions to meet particular shape
requirements. An important example are non-crossing constraints (commonplace in nonparametric,
multiple quantile regression [18, 38]): here, we optimize (4) jointly over ` = 1, . . . , r, subject to

b`k +
∑
j 6=k

f`kj(y
(i)
j ) ≤ b`′k +

∑
j 6=k

f`′kj(y
(i)
j ), for all α` < α`′ , and i = 1, . . . , n. (6)

This ensures that the estimated quantiles obey the proper ordering, at the observations. For concrete-
ness, we consider the implications for the basis regression model, in Example 1 (similar statements
hold for the other two models). For each ` = 1, . . . , r, denote by F`k(b`k, θ`k) the criterion in (5).
Introducing the non-crossing constraints requires coupling (5) over ` = 1, . . . , r, so that we now have
the following optimization problems, for each target variable k = 1, . . . , d:

minimize
Bk,Θk

r∑
`=1

F`k(b`k, θ`k) subject to (1BTk + ΦΘk)DT ≥ 0, (7)

where we denote Bk = (b1k, . . . , brk) ∈ Rr, Φ ∈ Rn×dm the basis matrix as before, Θk ∈ Rdm×r

given by column-stacking θ`k ∈ Rdm, ` = 1, . . . , r, and D ∈ R(r−1)×r is the usual discrete
difference operator. (The inequality in (7) is to be interpreted componentwise.) Computationally,
coupling the subproblems across ` = 1, . . . , r clearly adds to the overall difficulty of the MQGM, but
statistically this coupling acts as a regularizer, by constraining the parameter space in a useful way,
thus increasing our efficiency in fitting multiple quantile levels from the given data.

For a triplet `, k, j, monotonicity constraints are also easy to add, i.e., f`kj(y
(i)
j ) ≤ f`kj(y(i′)

j ) for all
y

(i)
j < y

(i′)
j . Convexity constraints, where we require f`kj to be convex over the observations, for a

particular `, k, j, are also straightforward. Lastly, strong non-crossing constraints, where we enforce
(6) over all z ∈ Rd (not just over the observations) are also possible with positive basis functions.

Exogenous variables and conditional random fields So far, we have considered modeling the
joint distribution Pr(y1, . . . , yd), corresponding to learning a Markov random field (MRF). It is not
hard to extend our framework to model the conditional distribution Pr(y1, . . . , yd|x1, . . . , xp) given
some exogenous variables x1, . . . , xp, corresponding to learning a conditional random field (CRF).
To extend the basis regression model, we introduce the additional parameters θx`k ∈ Rp in (5), and the
loss now becomes ψα`

(Yk − b`k1T − Φθ`k −Xθx`k), where X ∈ Rn×q is filled with the exogenous
observations x(1), . . . , x(n) ∈ Rq; the other models are changed similarly.

4 Basic properties and theory

4.1 Quantiles and conditional independence

In the model (3), when a particular variable yj has no contribution, i.e., satisfied f∗`kj = 0 across all
quantile levels α`, ` = 1, . . . , r, what does this imply about the conditional independence between yk
and yj , given the rest? Outside of the multivariate normal model (where the feature transformations
need only be linear), nothing can be said in generality. But we argue that conditional independence can
be understood in a certain approximate sense (i.e., in a projected approximation of the data generating
model). We begin with a simple lemma. Its proof is elementary, and given in the supplement.
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Lemma 4.1. Let U, V,W be random variables, and suppose that all conditional quantiles of U |V,W
do not depend on V , i.e., QU |V,W (α) = QU |W (α) for all α ∈ [0, 1]. Then U and V are conditionally
independent given W .

By the lemma, if we knew that QU |V,W (α) = h(α,U,W ) for a function h, then it would follow that
U, V are conditionally independent givenW (n.b., the converse is true, as well). The MQGM problem
in (4), with sparsity imposed on the coefficients, essentially aims to achieve such a representation
for the conditional quantiles; of course we cannot use a fully nonparametric representation of the
conditional distribution yk|y¬k and instead we use an r-step approximation to the conditional cumu-
lative distribution function (CDF) of yk|y¬k (corresponding to estimating r conditional quantiles),
and (say) in the basis regression model, limit the dependence on conditioning variables to be in terms
of an additive function of RBFs in yj , j 6= k. Thus, if at the solution in (5) we find that θ̂`kj = 0,
` = 1, . . . , r, we may interpret this to mean that yk and yj are conditionally independent given the
remaining variables, but according to the distribution defined by the projection of yk|y¬k onto the
space of models considered in (5) (r-step conditional CDFs, which are additive expansions in yj ,
j 6= k). This interpretation is no more tenuous (arguably, less so, as the model space here is much
larger) than that needed when applying standard neighborhood selection to non-Gaussian data.

4.2 Gibbs sampling and the “joint” distribution

When specifying a form for the conditional distributions in a pseudolikelihood approximation as in
(2), it is natural to ask: what is the corresponding joint distribution? Unfortunately, for a general
collection of conditional distributions, there need not exist a compatible joint distribution, even
when all conditionals are continuous [41]. Still, pseudolikelihood approximations (a special case
of composite likelihood approximations), possess solid theoretical backing, in that maximizing the
pseudolikelihood relates closely to minimizing a certain (expected composite) Kullback-Leibler
divergence, measured to the true conditionals [39]. Recently, [7, 44] made nice progress in describing
specific conditions on conditional distributions that give rise to a valid joint distribution, though their
work was specific to exponential families. A practical answer to the question of this subsection is to
use Gibbs sampling, which attempts to draw samples consistent with the fitted conditionals; this is
precisely the observation of [13], who show that Gibbs sampling from discrete conditionals converges
to a unique stationary distribution, although this distribution may not actually be compatible with the
conditionals. The following result establishes the analogous claim for continuous conditionals; its
proof is in the supplement. We demonstrate the practical value of Gibbs sampling through various
examples in Section 6.

Lemma 4.2. Assume that the conditional distributions Pr(yk|y¬k), k = 1, . . . , d take only positive
values on their domain. Then, for any given ordering of the variables, Gibbs sampling converges to a
unique stationary distribution that can be reached from any initial point. (This stationary distribution
depends on the ordering.)

4.3 Graph structure recovery

When log d = O(n2/21), and we assume somewhat standard regularity conditions (listed as A1–A4
in the supplement), the MQGM estimate recovers the underlying conditional independencies with
high probability (interpreted in the projected model space, as explained in Section 4.1). Importantly,
we do not require a Gaussian, sub-Gaussian, or even parametric assumption on the data generating
process; instead, we assume i.i.d. draws y(1), . . . , y(n) ∈ Rd, where the conditional distributions
yk|y¬k have quantiles specified by the model in (3) for k = 1, . . . , d, ` = 1, . . . , r, and further, each
f∗`kj(x) = θT`kjφ

j(x)∗ for coefficients θ∗`kj ∈ Rm, j = 1, . . . , d, as in the basis expansion model.

Let E∗ denote the corresponding edge set of conditional dependencies from these neighborhood
models, i.e., {k, j} ∈ E∗ ⇐⇒ max`=1,...,r max{‖θ∗`kj‖2, |θ∗`jk‖2} > 0. We define the estimated
edge set Ê in the analogous way, based on the solution in (5). Without a loss of generality, we assume
the features have been scaled to satisfy ‖Φj‖ ≤

√
n for all j = 1, . . . , dm. The following is our

recovery result; its proof is provided in the supplement.

Theorem 4.3. Assume log d = O(n2/21), and conditions A1–A4 in the supplement. Assume that
the tuning parameters λ1, λ2 satisfy λ1 � (mn log(d2mr/δ) log3 n)1/2 and λ2 = o(n41/42/θ∗max),
where θ∗max = max`,k,j ‖θ∗`kj‖2. Then for n sufficiently large, the MQGM estimate in (5) exactly
recovers the underlying conditional dependencies, i.e., Ê = E∗, with probability at least 1− δ.
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The theorem shows that the nonzero pattern in the MQGM estimate identifies, with high probability,
the underlying conditional independencies. But to be clear, we emphasize that the MQGM estimate
is not an estimate of the inverse covariance matrix itself (this is also true of neighborhood regression,
SpaceJam of [40], and many other methods for learning graphical models).

5 Computational approach

By design, the MQGM problem in (5) separates into d subproblems, across k = 1, . . . , d (it therefore
suffices to consider only a single subproblem, so we omit notational dependence on k for auxil-
iary variables). While these subproblems are challenging for off-the-shelf solvers (even for only
moderately-sized graphs), the key terms here all admit efficient proximal operators [32], which makes
operator splitting methods like the alternating direction method of multipliers [5] a natural choice.
As an illustration, we consider the non-crossing constraints in the basis regression model below.
Reparameterizing our problem, so that we may apply ADMM, yields:

minimize
Θk,Bk,V,W,Z

ψA(Z) + λ1

∑r
`=1

∑d
j=1 ‖W`j‖2 + λ2

2 ‖W‖
2
F + I+(V DT )

subject to V = 1BTk + ΦΘk, W = Θk, Z = Yk1
T − 1BTk − ΦΘk,

(8)

where for brevity ψA(A) =
∑r
`=1

∑d
j=1 ψα`

(A`j), and I+(·) is the indicator function of the space
of elementwise nonnegative matrices. The augmented Lagrangian associated with (8) is:

Lρ(Θk, Bk, V,W,Z,UV , UW , UZ) = ψA(Z) + λ1

r∑
`=1

d∑
j=1

‖W`j‖2 +
λ2

2
‖W‖2F + I+(V DT )

+
ρ

2

(
‖1BTk + ΦΘk − V + UV ‖2F + ‖Θk −W + UW ‖2F + ‖Yk1T − 1BTk − ΦΘk − Z + UZ‖2F

)
,

(9)
where ρ > 0 is the augmented Lagrangian parameter, and UV , UW , UZ are dual variables correspond-
ing to the equality constraints on V,W,Z, respectively. Minimizing (9) over V yields:

V ← Piso
(
1BTk + ΦΘk + UV

)
, (10)

where Piso(·) denotes the row-wise projection operator onto the isotonic cone (the space of compo-
nentwise nondecreasing vectors), an O(nr) operation here [15]. Minimizing (9) over W`j yields the
update:

W`j ←
(Θk)`j + (UW )`j

1 + λ2/ρ

(
1− λ1/ρ

‖(Θk)`j + (UW )`j‖2

)
+

, (11)

where (·)+ is the positive part operator. This can be seen by deriving the proximal operator of the
function f(x) = λ1‖x‖2 + (λ2/2)‖x‖22. Minimizing (9) over Z yields the update:

Z ← prox(1/ρ)ψA
(Yk1

T − 1bTk − ΦΘk + UZ), (12)

where proxf (·) denotes the proximal operator of a function f . For the multiple quantile loss function
ψA, this is a kind of generalized soft-thresholding. The proof is given in the supplement.
Lemma 5.1. Let P+(·) and P−(·) be the elementwise positive and negative part operators, respec-
tively, and let a = (α1, . . . , αr). Then proxtψA

(A) = P+(A− t1aT ) + P−(A− t1aT ).

Finally, differentiation in (9) with respect to Bk and Θk yields the simultaneous updates:[
Θk

BTk

]
← 1

2

[
ΦTΦ + 1

2I ΦT1
1TΦ 1T1

]−1(
[I 0]

T
(W − UW ) +

[Φ 1]
T

(Yk1
T − Z + UZ + V − UV )

)
. (13)

A complete description of our ADMM algorithm for solving the MQGM problem is in the supplement.

Gibbs sampling Having fit the conditionals yk|y¬k, k = 1, . . . d, we may want to make predictions
or extract joint distributions over subsets of variables. As discussed in Section 4.2, there is no general
analytic form for these joint distributions, but the pseudolikelihood approximation underlying the
MQGM suggests a natural Gibbs sampler. A careful implementation that respects the additive model
in (3) yields a highly efficient Gibbs sampler, especially for CRFs; the supplement gives details.
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6 Empirical examples

6.1 Synthetic data

We consider synthetic examples, comparing the MQGM to neighborhood selection (MB), the graphi-
cal lasso (GLasso), SpaceJam [40], the nonparanormal skeptic [26], TIGER [24], and neighborhood
selection using the absolute loss (Laplace).

Ring example As a simple but telling example, we drew n = 400 samples from a “ring” distribution
in d = 4 dimensions. Data were generated by drawing a random angle ν ∼ Uniform(0, 1), a random
radius R ∼ N (0, 0.1), and then computing the coordinates y1 = R cos ν, y2 = R sin ν and
y3, y4 ∼ N (0, 1), i.e., y1 and y2 are the only dependent variables here. The MQGM was used with
m = 10 basis functions (RBFs), and r = 20 quantile levels. The left panel of Figure 1 plots samples
(blue) of the coordinates y1, y2 as well as new samples from the MQGM (red) fitted to these same
(blue) samples, obtained by using our Gibbs sampler; the samples from the MQGM appear to closely
match the samples from the underlying ring. The main panel of Figure 1 shows the conditional
dependencies recovered by the MQGM, SpaceJam, GLasso, and MB (plots for the other methods are
given in the supplement), when run on the ring data. We visualize these dependencies by forming a
d× d matrix with the cell (j, k) set to black if j, k are conditionally dependent given the others, and
white otherwise. Across a range of tuning parameters for each method, the MQGM is the only one
that successfully recovers the underlying conditional dependencies, at some point along its solution
path. In the supplement, we present an evaluation of the conditional CDFs given by each method,
when run on the ring data; again, the MQGM performs best in this setting.

Larger examples To investigate performance at larger scales, we drew n ∈ {50, 100, 300} samples
from a multivariate normal and Student t-distribution (with 3 degrees of freedom), both in d = 100
dimensions, both parameterized by a random, sparse, diagonally dominant d× d inverse covariance
matrix, following the procedure in [33, 17, 31, 1]. Over the same set of sample sizes, with d = 100, we
also considered an autoregressive setup in which we drew samples of pairs of adjacent variables from
the ring distribution. In all three data settings (normal, t, and autoregressive), we used m = 10 and
r = 20 for the MQGM. To summarize the performances, we considered a range of tuning parameters
for each method, computed corresponding false and true positive rates (in detecting conditional
dependencies), and then computed the corresponding area under the curve (AUC), following, e.g.,
[33, 17, 31, 1]. Table 1 reports the median AUCs (across 50 trials) for all three of these examples; the
MQGM outperforms all other methods on the autoregressive example; on the normal and Student t
examples, it performs quite competitively.
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Figure 1: Left: data from the ring distribution (blue) as well as new samples from the MQGM (red) fitted to
the same (blue) data, obtained by using our Gibbs sampler. Right: conditional dependencies recovered by the
MQGM, MB, GLasso, and SpaceJam on the ring data; black means conditional dependence. The MQGM is the
only method that successfully recovers the underlying conditional dependencies along its solution path.

Table 1: AUC values for the MQGM, MB, GLasso, SpaceJam, the nonparanormal skeptic, TIGER, and
Laplace for the normal, t, and autoregressive data settings; higher is better, best in bold.

Normal Student t Autoregressive
n = 50 n = 100 n = 300 n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

MQGM 0.953 0.976 0.988 0.928 0.947 0.981 0.726 0.754 0.955
MB 0.850 0.959 0.994 0.844 0.923 0.988 0.532 0.563 0.725
GLasso 0.908 0.964 0.998 0.691 0.605 0.965 0.541 0.620 0.711
SpaceJam 0.889 0.968 0.997 0.893 0.965 0.993 0.624 0.708 0.854
Nonpara. 0.881 0.962 0.996 0.862 0.942 0.998 0.545 0.590 0.612
TIGER 0.732 0.921 0.996 0.420 0.873 0.989 0.503 0.518 0.718
Laplace 0.803 0.931 0.989 0.800 0.876 0.991 0.530 0.554 0.758
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Figure 2: Top panel and bottom row,
middle panel: conditional dependen-
cies recovered by the MQGM on the
flu data; each of the first ten cells corre-
sponds to a region of the U.S., and black
means dependence. Bottom row, left
panel: wallclock time (in seconds) for
solving one subproblem using ADMM
versus SCS. Bottom row, right panel:
samples from the fitted marginal distri-
bution of the weekly flu incidence rates
at region 6; samples at larger quantiles
are shaded lighter, and the median is in
darker blue.

6.2 Modeling flu epidemics

We study n = 937 weekly flu incidence reports from September 28, 1997 through August 30,
2015, across 10 regions in the United States (see the top panel of Figure 2), obtained from [6]. We
considered d = 20 variables: the first 10 encode the current week’s flu incidence (precisely, the
percentage of doctor’s visits in which flu-like symptoms are presented) in the 10 regions, and the last
10 encode the same but for the prior week. We set m = 5, r = 99, and also introduced exogenous
variables to encode the week numbers, so p = 1. Thus, learning the MQGM here corresponds
to learning the structure of a spatiotemporal graphical model, and reduces to solving 20 multiple
quantile regression subproblems, each of dimension (19× 5 + 1)× 99 = 9504. All subproblems
took about 1 minute on a 6 core 3.3 Ghz Core i7 X980 processor.

The bottom left panel in Figure 2 plots the time (in seconds) taken for solving one subproblem using
ADMM versus SCS [30], a cone solver that has been advocated as a reasonable choice for a class
of problems encapsulating (4); ADMM outperforms SCS by roughly two orders of magnitude. The
bottom middle panel of Figure 2 presents the conditional independencies recovered by the MQGM.
Nonzero entries in the upper left 10 × 10 submatrix correspond to dependencies between the yk
variables for k = 1, . . . , 10; e.g., the nonzero (0,2) entry suggests that region 1 and 3’s flu reports are
dependent. The lower right 10× 10 submatrix corresponds to the yk variables for k = 11, . . . , 20,
and the nonzero banded entries suggest that at any region the previous week’s flu incidence (naturally)
influences the next week’s. The top panel of Figure 2 visualizes these relationships by drawing an
edge between dependent regions; region 6 is highly connected, suggesting that it may be a bellwether
for other regions, roughly in keeping with the current understanding of flu dynamics. To draw samples
from the fitted distributions, we ran our Gibbs sampler over the year, generating 1000 total samples,
making 5 passes over all coordinates between each sample, and with a burn-in period of 100 iterations.
The bottom right panel of Figure 2 plots samples from the marginal distribution of the percentages
of flu reports at region 6 (other regions are in the supplement) throughout the year, revealing the
heteroskedastic nature of the data.

For space reasons, our last example, on wind power data, is presented in the supplement.

7 Discussion

We proposed and studied the Multiple Quantile Graphical Model (MQGM). We established theoretical
and empirical backing to the claim that the MQGM is capable of compactly representing relationships
between heteroskedastic non-Gaussian variables. We also developed efficient algorithms for both
estimation and sampling in the MQGM. All in all, we believe that our work represents a step forward
in the design of flexible yet tractable graphical models.
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