NIPS Proceedingsβ

On Top-k Selection in Multi-Armed Bandits and Hidden Bipartite Graphs

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


This paper discusses how to efficiently choose from $n$ unknowndistributions the $k$ ones whose means are the greatest by a certainmetric, up to a small relative error. We study the topic under twostandard settings---multi-armed bandits and hidden bipartitegraphs---which differ in the nature of the input distributions. In theformer setting, each distribution can be sampled (in the i.i.d.manner) an arbitrary number of times, whereas in the latter, eachdistribution is defined on a population of a finite size $m$ (andhence, is fully revealed after $m$ samples). For both settings, weprove lower bounds on the total number of samples needed, and proposeoptimal algorithms whose sample complexities match those lower bounds.