
Bayesian Dark Knowledge

Anoop Korattikara, Vivek Rathod, Kevin Murphy
Google Research

{kbanoop, rathodv, kpmurphy}@google.com

Max Welling
University of Amsterdam
m.welling@uva.nl

Abstract

We consider the problem of Bayesian parameter estimation for deep neural net-
works, which is important in problem settings where we may have little data, and/
or where we need accurate posterior predictive densities p(y|x,D), e.g., for appli-
cations involving bandits or active learning. One simple approach to this is to use
online Monte Carlo methods, such as SGLD (stochastic gradient Langevin dynam-
ics). Unfortunately, such a method needs to store many copies of the parameters
(which wastes memory), and needs to make predictions using many versions of
the model (which wastes time).
We describe a method for “distilling” a Monte Carlo approximation to the pos-
terior predictive density into a more compact form, namely a single deep neural
network. We compare to two very recent approaches to Bayesian neural networks,
namely an approach based on expectation propagation [HLA15] and an approach
based on variational Bayes [BCKW15]. Our method performs better than both of
these, is much simpler to implement, and uses less computation at test time.

1 Introduction

Deep neural networks (DNNs) have recently been achieving state of the art results in many fields.
However, their predictions are often over confident, which is a problem in applications such as
active learning, reinforcement learning (including bandits), and classifier fusion, which all rely on
good estimates of uncertainty.

A principled way to tackle this problem is to use Bayesian inference. Specifically, we first com-
pute the posterior distribution over the model parameters, p(θ|DN ) ∝ p(θ)

∏N
i=1 p(yi|xi, θ), where

DN = {(xi, yi)}Ni=1, xi ∈ XD is the i’th input (where D is the number of features), and
yi ∈ Y is the i’th output. Then we compute the posterior predictive distribution, p(y|x,DN ) =∫
p(y|x, θ)p(θ|DN )dθ, for each test point x.

For reasons of computational speed, it is common to approximate the posterior distribution by a
point estimate such as the MAP estimate, θ̂ = argmax p(θ|DN ). When N is large, we often use
stochastic gradient descent (SGD) to compute θ̂. Finally, we make a plug-in approximation to the
predictive distribution: p(y|x,DN ) ≈ p(y|x, θ̂). Unfortunately, this loses most of the benefits
of the Bayesian approach, since uncertainty in the parameters (which induces uncertainty in the
predictions) is ignored.

Various ways of more accurately approximating p(θ|DN ) (and hence p(y|x,DN )) have been devel-
oped. Recently, [HLA15] proposed a method called “probabilistic backpropagation” (PBP) based
on an online version of expectation propagation (EP), (i.e., using repeated assumed density filtering
(ADF)), where the posterior is approximated as a product of univariate Gaussians, one per parame-
ter: p(θ|DN ) ≈ q(θ) ,

∏
iN (θi|mi, vi).

An alternative to EP is variational Bayes (VB) where we optimize a lower bound on the marginal
likelihood. [Gra11] presented a (biased) Monte Carlo estimate of this lower bound and applies

1



his method, called “variational inference” (VI), to infer the neural network weights. More recently,
[BCKW15] proposed an approach called “Bayes by Backprop” (BBB), which extends the VI method
with an unbiased MC estimate of the lower bound based on the “reparameterization trick” of [KW14,
RMW14]. In both [Gra11] and [BCKW15], the posterior is approximated by a product of univariate
Gaussians.

Although EP and VB scale well with data size (since they use online learning), there are several
problems with these methods: (1) they can give poor approximations when the posterior p(θ|DN )
does not factorize, or if it has multi-modality or skew; (2) at test time, computing the predictive
density p(y|x,DN ) can be much slower than using the plug-in approximation, because of the need
to integrate out the parameters; (3) they need to use double the memory of a standard plug-in method
(to store the mean and variance of each parameter), which can be problematic in memory-limited
settings such as mobile phones; (4) they can be quite complicated to derive and implement.

A common alternative to EP and VB is to use MCMC methods to approximate p(θ|DN ). Tra-
ditional MCMC methods are batch algorithms, that scale poorly with dataset size. However, re-
cently a method called stochastic gradient Langevin dynamics (SGLD) [WT11] has been devised
that can draw samples approximately from the posterior in an online fashion, just as SGD updates a
point estimate of the parameters online. Furthermore, various extensions of SGLD have been pro-
posed, including stochastic gradient hybrid Monte Carlo (SGHMC) [CFG14], stochastic gradient
Nosé-Hoover Thermostat (SG-NHT) [DFB+14] (which improves upon SGHMC), stochastic gra-
dient Fisher scoring (SGFS) [AKW12] (which uses second order information), stochastic gradient
Riemannian Langevin Dynamics [PT13], distributed SGLD [ASW14], etc. However, in this paper,
we will just use “vanilla” SGLD [WT11].1

All these MCMC methods (whether batch or online) produce a Monte Carlo approximation to the
posterior, q(θ) = 1

S

∑S
s=1 δ(θ − θs), where S is the number of samples. Such an approxima-

tion can be more accurate than that produced by EP or VB, and the method is much easier to
implement (for SGLD, you essentially just add Gaussian noise to your SGD updates). However,
at test time, things are S times slower than using a plug-in estimate, since we need to compute
q(y|x) = 1

S

∑S
s=1 p(y|x, θs), and the memory requirements are S times bigger, since we need to

store the θs. (For our largest experiment, our DNN has 500k parameters, so we can only afford to
store a single sample.)

In this paper, we propose to train a parametric model S(y|x,w) to approximate the Monte Carlo
posterior predictive distribution q(y|x) in order to gain the benefits of the Bayesian approach while
only using the same run time cost as the plugin method. Following [HVD14], we call q(y|x) the
“teacher” and S(y|x,w) the “student”. We use SGLD2 to estimate q(θ) and hence q(y|x) online;
we simultaneously train the student online to minimize KL(q(y|x)||S(y|x,w)). We give the details
in Section 2.

Similar ideas have been proposed in the past. In particular, [SG05] also trained a parametric student
model to approximate a Monte Carlo teacher. However, they used batch training and they used
mixture models for the student. By contrast, we use online training (and can thus handle larger
datasets), and use deep neural networks for the student.

[HVD14] also trained a student neural network to emulate the predictions of a (larger) teacher net-
work (a process they call “distillation”), extending earlier work of [BCNM06] which approximated
an ensemble of classifiers by a single one. The key difference from our work is that our teacher
is generated using MCMC, and our goal is not just to improve classification accuracy, but also to
get reliable probabilistic predictions, especially away from the training data. [HVD14] coined the
term “dark knowledge” to represent the information which is “hidden” inside the teacher network,
and which can then be distilled into the student. We therefore call our approach “Bayesian dark
knowledge”.

1 We did some preliminary experiments with SG-NHT for fitting an MLP to MNIST data, but the results
were not much better than SGLD.

2Note that SGLD is an approximate sampling algorithm and introduces a slight bias in the predictions of
the teacher and student network. If required, we can replace SGLD with an exact MCMC method (e.g. HMC)
to get more accurate results at the expense of more training time.

2



In summary, our contributions are as follows. First, we show how to combine online MCMC meth-
ods with model distillation in order to get a simple, scalable approach to Bayesian inference of the
parameters of neural networks (and other kinds of models). Second, we show that our probabilistic
predictions lead to improved log likelihood scores on the test set compared to SGD and the recently
proposed EP and VB approaches.

2 Methods

Our goal is to train a student neural network (SNN) to approximate the Bayesian predictive distri-
bution of the teacher, which is a Monte Carlo ensemble of teacher neural networks (TNN).

If we denote the predictions of the teacher by p(y|x,DN ) and the parameters of the student network
by w, our objective becomes

L(w|x) = KL(p(y|x,DN )||S(y|x,w)) = −Ep(y|x,DN ) logS(y|x,w) + const

= −
∫ [∫

p(y|x, θ)p(θ|DN )dθ

]
logS(y|x,w)dy

= −
∫
p(θ|DN )

∫
p(y|x, θ) logS(y|x,w)dy dθ

= −
∫
p(θ|DN )

[
Ep(y|x,θ) logS(y|x,w)

]
dθ (1)

Unfortunately, computing this integral is not analytically tractable. However, we can approximate
this by Monte Carlo:

L̂(w|x) = − 1

|Θ|
∑
θs∈Θ

Ep(y|x,θs) logS(y|x,w) (2)

where Θ is a set of samples from p(θ|DN ).

To make this a function just of w, we need to integrate out x. For this, we need a dataset to train
the student network on, which we will denote by D′. Note that points in this dataset do not need
ground truth labels; instead the labels (which will be probability distributions) will be provided
by the teacher. The choice of student data controls the domain over which the student will make
accurate predictions. For low dimensional problems (such as in Section 3.1), we can uniformly
sample the input domain. For higher dimensional problems, we can sample “near” the training
data, for example by perturbing the inputs slightly. In any case, we will compute a Monte Carlo
approximation to the loss as follows:

L̂(w) =

∫
p(x)L(w|x)dx ≈ 1

|D′|
∑
x′∈D′

L(w|x′)

≈ − 1

|Θ|
1

|D′|
∑
θs∈Θ

∑
x′∈D′

Ep(y|x′,θs) logS(y|x′, w) (3)

It can take a lot of memory to pre-compute and store the set of parameter samples Θ and the set of
data samples D′, so in practice we use the stochastic algorithm shown in Algorithm 1, which uses a
single posterior sample θs and a minibatch of x′ at each step.

The hyper-parameters λ and γ from Algorithm 1 control the strength of the priors for the teacher
and student networks. We use simple spherical Gaussian priors (equivalent to L2 regularization);
we set the precision (strength) of these Gaussian priors by cross-validation. Typically λ� γ, since
the student gets to “see” more data than the teacher. This is true for two reasons: first, the teacher
is trained to predict a single label per input, whereas the student is trained to predict a distribution,
which contains more information (as argued in [HVD14]); second, the teacher makes multiple passes
over the same training data, whereas the student sees “fresh” randomly generated data D′ at each
step.

2.1 Classification

For classification problems, each teacher network θs models the observations using a standard soft-
max model, p(y = k|x, θs). We want to approximate this using a student network, which also has a

3



Algorithm 1: Distilled SGLD

Input: DN = {(xi, yi)}Ni=1, minibatch size M , number of iterations T , teacher learning schedule
ηt, student learning schedule ρt, teacher prior λ, student prior γ
for t = 1 : T do

// Train teacher (SGLD step)
Sample minibatch indices S ⊂ [1, N ] of size M
Sample zt ∼ N (0, ηtI)

Update θt+1 := θt + ηt
2

(
∇θ log p(θ|λ) + N

M

∑
i∈S ∇θ log p(yi|xi, θ)

)
+ zt

// Train student (SGD step)
Sample D′ of size M from student data generator

wt+1 := wt − ρt
(

1
M

∑
x′∈D′ ∇wL̂(w, θt+1|x′) + γwt

)

softmax output, S(y = k|x,w). Hence from Eqn. 2, our loss function estimate is the standard cross
entropy loss:

L̂(w|θs, x) = −
K∑
k=1

p(y = k|x, θs) logS(y = k|x,w) (4)

The student network outputs βk(x,w) = logS(y = k|x,w). To estimate the gradient w.r.t. w, we
just have to compute the gradients w.r.t. β and back-propagate through the network. These gradients
are given by ∂L̂(w,θs|x)

∂βk(x,w) = −p(y = k|x, θs).

2.2 Regression

In regression, the observations are modeled as p(yi|xi, θ) = N (yi|f(xi|θ), λ−1
n ) where f(x|θ) is

the prediction of the TNN and λn is the noise precision. We want to approximate the predictive
distribution as p(y|x,DN ) ≈ S(y|x,w) = N (y|µ(x,w), eα(x,w)). We will train a student network
to output the parameters of the approximating distribution µ(x,w) and α(x,w); note that this is
twice the number of outputs of the teacher network, since we want to capture the (data dependent)
variance.3 We use eα(x,w) instead of directly predicting the variance σ2(x|w) to avoid dealing with
positivity constraints during training.

To train the SNN, we will minimize the objective defined in Eqn. 2:

L̂(w|θs, x) = −Ep(y|x,θs) logN (y|µ(x,w), eα(x,w))

=
1

2
Ep(y|x,θs)

[
α(x,w) + e−α(x,w)(y − µ(x,w)2)

]
=

1

2

[
α(x,w) + e−α(x,w)

{
(f(x|θs)− µ(x,w))

2
+

1

λn

}]
Now, to estimate∇wL̂(w, θs|x), we just have to compute ∂L̂

∂µ(x,w) and ∂L̂
∂α(x,w) , and back propagate

through the network. These gradients are:

∂L̂(w, θs|x)

∂µ(x,w)
= e−α(x,w) {µ(x,w)− f(x|θs)} (5)

∂L̂(w, θs|x
∂α(x,w)

=
1

2

[
1− e−α(x,w)

{
(f(x|θs)− µ(x,w))2 +

1

λn

}]
(6)

3 Experimental results

In this section, we compare SGLD and distilled SGLD with other approximate inference methods,
including the plugin approximation using SGD, the PBP approach of [HLA15], the BBB approach of

3 This is not necessary in the classification case, since the softmax distribution already captures uncertainty.

4



Dataset N D Y PBP BBB HMC
ToyClass 20 2 {0, 1} N N Y
MNIST 60k 784 {0, . . . , 9} N Y N
ToyReg 10 1 R Y N Y
Boston Housing 506 13 R Y N N

Table 1: Summary of our experimental configurations.

(a) (b) (c)

(d) (e) (f)

Figure 1: Posterior predictive density for various methods on the toy 2d dataset. (a) SGD (plugin)
using the 2-10-2 network. (b) HMC using 20k samples. (c) SGLD using 1k samples. (d-f) Distilled
SGLD using a student network with the following architectures: 2-10-2, 2-100-2 and 2-10-10-2.

[BCKW15], and Hamiltonian Monte Carlo (HMC) [Nea11], which is considered the “gold standard”
for MCMC for neural nets. We implemented SGD and SGLD using the Torch library (torch.ch).
For HMC, we used Stan (mc-stan.org). We perform this comparison for various classification
and regression problems, as summarized in Table 1.4

3.1 Toy 2d classification problem

We start with a toy 2d binary classification problem, in order to visually illustrate the performance
of different methods. We generate a synthetic dataset in 2 dimensions with 2 classes, 10 points per
class. We then fit a multi layer perceptron (MLP) with one hidden layer of 10 ReLu units and 2
softmax outputs (denoted 2-10-2) using SGD. The resulting predictions are shown in Figure 1(a).
We see the expected sigmoidal probability ramp orthogonal to the linear decision boundary. Unfor-
tunately, this method predicts a label of 0 or 1 with very high confidence, even for points that are far
from the training data (e.g., in the top left and bottom right corners).

In Figure 1(b), we show the result of HMC using 20k samples. This is the “true” posterior predictive
density which we wish to approximate. In Figure 1(c), we show the result of SGLD using about 1000
samples. Specifically, we generate 100k samples, discard the first 2k for burnin, and then keep every
100’th sample. We see that this is a good approximation to the HMC distribution.

In Figures 1(d-f), we show the results of approximating the SGLD Monte Carlo predictive distribu-
tion with a single student MLP of various sizes. To train this student network, we sampled points at
random from the domain of the input, [−10, 10] × [−10, 10]; this encourages the student to predict
accurately at all locations, including those far from the training data. In (d), the student has the same

4 Ideally, we would apply all methods to all datasets, to enable a proper comparison. Unfortunately, this was
not possible, for various reasons. First, the open source code for the EP approach only supports regression, so
we could not evaluate this on classification problems. Second, we were not able to run the BBB code, so we just
quote performance numbers from their paper [BCKW15]. Third, HMC is too slow to run on large problems, so
we just applied it to the small “toy” problems. Nevertheless, our experiments show that our methods compare
favorably to these other methods.

5

torch.ch
mc-stan.org


Model Num. params. KL
SGD 40 0.246
SGLD 40k 0.007
Distilled 2-10-2 40 0.031
Distilled 2-100-2 400 0.014
Distilled 2-10-10-2 140 0.009

Table 2: KL divergence on the 2d classification dataset.

SGD [BCKW15] Dropout BBB SGD (our impl.) SGLD Dist. SGLD
1.83 1.51 1.82 1.536 ± 0.0120 1.271 ± 0.0126 1.307 ± 0.0169

Table 3: Test set misclassification rate on MNIST for different methods using a 784-400-400-10
MLP. SGD (first column), Dropout and BBB numbers are quoted from [BCKW15]. For our impl-
mentation of SGD (fourth column), SGLD and distilled SGLD, we report the mean misclassification
rate over 10 runs and its standard error.

size as the teacher (2-10-2), but this is too simple a model to capture the complexity of the predictive
distribution (which is an average over models). In (e), the student has a larger hidden layer (2-100-
2); this works better. However, we get best results using a two hidden layer model (2-10-10-2), as
shown in (f).

In Table 2, we show the KL divergence between the HMC distribution (which we consider as ground
truth) and the various approximations mentioned above. We computed this by comparing the prob-
ability distributions pointwise on a 2d grid. The numbers match the qualitative results shown in
Figure 1.

3.2 MNIST classification

Now we consider the MNIST digit classification problem, which has N = 60k examples, 10
classes, and D = 784 features. The only preprocessing we do is divide the pixel values by 126
(as in [BCKW15]). We train only on 50K datapoints and use the remaining 10K for tuning hyper-
parameters. This means our results are not strictly comparable to a lot of published work, which
uses the whole dataset for training; however, the difference is likely to be small.

Following [BCKW15], we use an MLP with 2 hidden layers with 400 hidden units per layer, ReLU
activations, and softmax outputs; we denote this by 784-400-400-10. This model has 500k parame-
ters.

We first fit this model by SGD, using these hyper parameters: fixed learning rate of ηt = 5× 10−6,
prior precision λ = 1, minibatch size M = 100, number of iterations T = 1M . As shown in
Table 3, our final error rate on the test set is 1.536%, which is a bit lower than the SGD number
reported in [BCKW15], perhaps due to the slightly different training/ validation configuration.

Next we fit this model by SGLD, using these hyper parameters: fixed learning rate of ηt = 4×10−6,
thinning interval τ = 100, burn in iterations B = 1000, prior precision λ = 1, minibatch size
M = 100. As shown in Table 3, our final error rate on the test set is about 1.271%, which is better
than the SGD, dropout and BBB results from [BCKW15].5

Finally, we consider using distillation, where the teacher is an SGLD MC approximation of the
posterior predictive. We use the same 784-400-400-10 architecture for the student as well as the
teacher. We generate data for the student by adding Gaussian noise (with standard deviation of
0.001) to randomly sampled training points6 We use a constant learning rate of ρ = 0.005, a batch
size of M = 100, a prior precision of 0.001 (for the student) and train for T = 1M iterations. We
obtain a test error of 1.307% which is very close to that obtained with SGLD (see Table 4).

5 We only show the BBB results with the same Gaussian prior that we use. Performance of BBB can be
improved using other priors, such as a scale mixture of Gaussians, as shown in [BCKW15]. Our approach
could probably also benefit from such a prior, but we did not try this.

6In the future, we would like to consider more sophisticated data perturbations, such as elastic distortions.

6



SGD SGLD Distilled SGLD
-0.0613 ± 0.0002 -0.0419 ± 0.0002 -0.0502 ± 0.0007

Table 4: Log likelihood per test example on MNIST. We report the mean over 10 trials ± one
standard error.

Method Avg. test log likelihood
PBP (as reported in [HLA15]) -2.574 ± 0.089
VI (as reported in [HLA15]) -2.903 ± 0.071
SGD -2.7639 ± 0.1527
SGLD -2.306 ± 0.1205
SGLD distilled -2.350 ± 0.0762

Table 5: Log likelihood per test example on the Boston housing dataset. We report the mean over
20 trials ± one standard error.

We also report the average test log-likelihood of SGD, SGLD and distilled SGLD in Table 4. The
log-likelihood is equivalent to the logarithmic scoring rule [Bic07] used in assessing the calibration
of probabilistic models. The logarithmic rule is a strictly proper scoring rule, meaning that the
score is uniquely maximized by predicting the true probabilities. From Table 4, we see that both
SGLD and distilled SGLD acheive higher scores than SGD, and therefore produce better calibrated
predictions.

Note that the SGLD results were obtained by averaging predictions from ≈ 10,000 models sampled
from the posterior, whereas distillation produces a single neural network that approximates the av-
erage prediction of these models, i.e. distillation reduces both storage and test time costs of SGLD
by a factor of 10,000, without sacrificing much accuracy. In terms of training time, SGD took 1.3
ms, SGLD took 1.6 ms and distilled SGLD took 3.2 ms per iteration. In terms of memory, distilled
SGLD requires only twice as much as SGD or SGLD during training, and the same as SGD during
testing.

3.3 Toy 1d regression

We start with a toy 1d regression problem, in order to visually illustrate the performance of different
methods. We use the same data and model as [HLA15]. In particular, we use N = 20 points in
D = 1 dimensions, sampled from the function y = x3 + εn, where εn ∼ N (0, 9). We fit this data
with an MLP with 10 hidden units and ReLU activations. For SGLD, we use S = 2000 samples.
For distillation, the teacher uses the same architecture as the student.

The results are shown in Figure 2. We see that SGLD is a better approximation to the “true” (HMC)
posterior predictive density than the plugin SGD approximation (which has no predictive uncer-
tainty), and the VI approximation of [Gra11]. Finally, we see that distilling SGLD incurs little loss
in accuracy, but saves a lot computationally.

3.4 Boston housing

Finally, we consider a larger regression problem, namely the Boston housing dataset, which was
also used in [HLA15]. This has N = 506 data points (456 training, 50 testing), with D = 13
dimensions. Since this data set is so small, we repeated all experiments 20 times, using different
train/ test splits.

Following [HLA15], we use an MLP with 1 layer of 50 hidden units and ReLU activations. First
we use SGD, with these hyper parameters7: Minibatch size M = 1, noise precision λn = 1.25,
prior precision λ = 1, number of trials 20, constant learning rate ηt = 1e− 6, number of iterations
T = 170K. As shown in Table 5, we get an average log likelihood of −2.7639.

Next we fit the model using SGLD. We use an initial learning rate of η0 = 1e− 5, which we reduce
by a factor of 0.5 every 80K iterations; we use 500K iterations, a burnin of 10K, and a thinning

7We choose all hyper-parameters using cross-validation whereas [HLA15] performs posterior inference on
the noise and prior precisions, and uses Bayesian optimization to choose the remaining hyper-parameters.

7



Figure 2: Predictive distribution for different methods on a toy 1d regression problem. (a) PBP of
[HLA15]. (b) HMC. (c) VI method of [Gra11]. (d) SGD. (e) SGLD. (f) Distilled SGLD. Error bars
denote 3 standard deviations. (Figures a-d kindly provided by the authors of [HLA15]. We replace
their term “BP” (backprop) with “SGD” to avoid confusion.)

interval of 10. As shown in Table 5, we get an average log likelihood of −2.306, which is better
than SGD.

Finally, we distill our SGLD model. The student architecture is the same as the teacher. We use the
following teacher hyper parameters: prior precision λ = 2.5; initial learning rate of η0 = 1e − 5,
which we reduce by a factor of 0.5 every 80K iterations. For the student, we use generated training
data with Gaussian noise with standard deviation 0.05, we use a prior precision of γ = 0.001, an
initial learning rate of ρ0 = 1e − 2, which we reduce by 0.8 after every 5e3 iterations. As shown
in Table 5, we get an average log likelihood of −2.350, which is only slightly worse than SGLD,
and much better than SGD. Furthermore, both SGLD and distilled SGLD are better than the PBP
method of [HLA15] and the VI method of [Gra11].

4 Conclusions and future work

We have shown a very simple method for “being Bayesian” about neural networks (and other kinds
of models), that seems to work better than recently proposed alternatives based on EP [HLA15] and
VB [Gra11, BCKW15].

There are various things we would like to do in the future: (1) Show the utility of our model in
an end-to-end task, where predictive uncertainty is useful (such as with contextual bandits or active
learning). (2) Consider ways to reduce the variance of the algorithm, perhaps by keeping a running
minibatch of parameters uniformly sampled from the posterior, which can be done online using
reservoir sampling. (3) Exploring more intelligent data generation methods for training the student.
(4) Investigating if our method is able to reduce the prevalence of confident false predictions on
adversarially generated examples, such as those discussed in [SZS+14].

Acknowledgements

We thank José Miguel Hernández-Lobato, Julien Cornebise, Jonathan Huang, George Papandreou,
Sergio Guadarrama and Nick Johnston.

8



References
[AKW12] S. Ahn, A. Korattikara, and M. Welling. Bayesian Posterior Sampling via Stochastic Gradient

Fisher Scoring. In ICML, 2012.

[ASW14] Sungjin Ahn, Babak Shahbaba, and Max Welling. Distributed stochastic gradient MCMC. In
ICML, 2014.

[BCKW15] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural net-
works. In ICML, 2015.

[BCNM06] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In KDD,
2006.

[Bic07] J Eric Bickel. Some comparisons among quadratic, spherical, and logarithmic scoring rules. De-
cision Analysis, 4(2):49–65, 2007.

[CFG14] Tianqi Chen, Emily B Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo.
In ICML, 2014.

[DFB+14] N Ding, Y Fang, R Babbush, C Chen, R Skeel, and H Neven. Bayesian sampling using stochastic
gradient thermostats. In NIPS, 2014.

[GG15] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. 6 June 2015.

[Gra11] Alex Graves. Practical variational inference for neural networks. In NIPS, 2011.

[HLA15] J. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable learning of
bayesian neural networks. In ICML, 2015.

[HVD14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning Workshop, 2014.

[KW14] Diederik P Kingma and Max Welling. Stochastic gradient VB and the variational auto-encoder.
In ICLR, 2014.

[Nea11] Radford Neal. MCMC using hamiltonian dynamics. In Handbook of Markov chain Monte Carlo.
Chapman and Hall, 2011.

[PT13] Sam Patterson and Yee Whye Teh. Stochastic gradient riemannian langevin dynamics on the
probability simplex. In NIPS, 2013.

[RBK+14] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. FitNets: Hints for thin deep nets. Arxiv, 19 2014.

[RMW14] D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In ICML, 2014.

[SG05] Edward Snelson and Zoubin Ghahramani. Compact approximations to bayesian predictive distri-
butions. In ICML, 2005.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[WT11] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
ICML, 2011.

9


