NIPS Proceedingsβ

A Gaussian Process Model of Quasar Spectral Energy Distributions

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


We propose a method for combining two sources of astronomical data, spectroscopy and photometry, that carry information about sources of light (e.g., stars, galaxies, and quasars) at extremely different spectral resolutions. Our model treats the spectral energy distribution (SED) of the radiation from a source as a latent variable that jointly explains both photometric and spectroscopic observations. We place a flexible, nonparametric prior over the SED of a light source that admits a physically interpretable decomposition, and allows us to tractably perform inference. We use our model to predict the distribution of the redshift of a quasar from five-band (low spectral resolution) photometric data, the so called ``photo-z'' problem. Our method shows that tools from machine learning and Bayesian statistics allow us to leverage multiple resolutions of information to make accurate predictions with well-characterized uncertainties.