NIPS Proceedingsβ

High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


We provide a general theory of the expectation-maximization (EM) algorithm for inferring high dimensional latent variable models. In particular, we make two contributions: (i) For parameter estimation, we propose a novel high dimensional EM algorithm which naturally incorporates sparsity structure into parameter estimation. With an appropriate initialization, this algorithm converges at a geometric rate and attains an estimator with the (near-)optimal statistical rate of convergence. (ii) Based on the obtained estimator, we propose a new inferential procedure for testing hypotheses for low dimensional components of high dimensional parameters. For a broad family of statistical models, our framework establishes the first computationally feasible approach for optimal estimation and asymptotic inference in high dimensions.