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Abstract

We propose a family of non-uniform sampling strategies to provably speed up
a class of stochastic optimization algorithms with linear convergence including
Stochastic Variance Reduced Gradient (SVRG) and Stochastic Dual Coordinate
Ascent (SDCA). For a large family of penalized empirical risk minimization prob-
lems, our methods exploit data dependent local smoothness of the loss functions
near the optimum, while maintaining convergence guarantees. Our bounds are the
first to quantify the advantage gained from local smoothness which are significant
for some problems significantly better. Empirically, we provide thorough numer-
ical results to back up our theory. Additionally we present algorithms exploiting
local smoothness in more aggressive ways, which perform even better in practice.

1 Introduction

We consider minimization of functions of form

P (w) = n−1
n∑

i=1

φi

(
x⊤
i w
)
+R (w)

where the convex φi corresponds to a loss of w on some data xi, R is a convex regularizer and P

is µ strongly convex, so that P (w′) ≥ P (w) + 〈w′ − w,▽P (w)〉 + µ
2 ‖w′ − w‖2. In addition,

we assume each φi is smooth in general and near flat in some region; examples include SVM,
regression with the absolute error or ε insensitive loss, smooth approximations of those, and also
logistic regression.

Stochastic optimization algorithms consider one loss φi at a time, chosen at random according to
a distribution pt which may change over time. Recent algorithms combine φi with information
about previously seen losses to accelerate the process, achieving linear convergence rate, including
Stochastic Variance Reduced Gradient (SVRG) [2], Stochastic Averaged Gradient (SAG) [4], and
Stochastic Dual Coordinate Ascent (SDCA) [6]. The expected number of iterations required by these
algorithms is of form O

(
(n+ L/µ) log

(
ε−1
))

where L is a Lipschitz constant of all loss gradients
▽φi, measuring their smoothness. Difficult problems, having a condition number L/µ much larger
than n, are called ill conditioned, and have motivated the development of accelerated algorithms
[5, 8, 3]. Some of these algorithms have been adapted to allow importance sampling where pt is non
uniform; the effect on convergence bounds is to replace the uniform bound L described above by
Lavg, the average over Li, loss specific Lipschitz bounds.

In practice, for an important class of problems, a large proportion of φi need to be sampled only
very few times, and others indefinitely. As an example we take an instance of smooth SVM, with
µ = n−1 and L ≈ 30, solved via standard SDCA. In Figure 1 we observe the decay of an upper
bound on the updates possible for different samples, where choosing a sample that is white produces
no update. The large majority of the figure is white, indicating wasted effort. For 95% of losses,
the algorithm captured all relevant information after just 3 visits. Since the non white zone is nearly
constant over time, detecting and focusing on the few important losses should be possible. This
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represents both a success of SDCA and a significant room for improvement, as focusing just half the
effort on the active losses would increase effectiveness by a factor of 10.

Similar phenomena occur under the SVRG and SAG algorithms as well. But is the phenomenon
specific to a single problem, or general? for what problems can we expect the set of useful losses to
be small and near constant?

Figure 1: SDCA on smoothed SVM. Dual residuals upper bound the SDCA update size; white
indicates zero hence wasted effort. The dual residuals quickly become sparse; the support is stable.

Allowing pt to change over time, the phenomenon described indeed can be exploited; Figure 2
shows significant speedups obtained by our variants of SVRG and SDCA. Comparisons on other
datasets are given in Section 4. The mechanism by which speed up is obtained is specific to each al-
gorithm, but the underlying phenomenon we exploit is the same: many problems are much smoother
locally than globally. First consider a single smoothed hinge loss φi, as used in smoothed SVM with
smoothing parameter γ. The non-smoothness of the hinge loss is spread in φi over an interval of
length γ, as illustrated in Figure 3 and given by

φi (a) =





0 a > 1

1− a− γ/2 a < 1− γ

(a− 1)
2
/ (2γ) otherwise

.

The Lipschitz constant of d
daφi (a) is γ−1, hence it enters into the global estimate of condition num-

ber Lavg as Li = ‖xi‖ /γ; hence approximating the hinge loss more precisely, with a smaller γ,
makes the problems strictly more ill conditioned. But outside that interval of length γ, φi can be
locally approximated as affine, having a constant gradient; into a correct expression of local condi-
tioning, say on interval B in the figure, it should contribute nothing. So smaller γ can sometimes
make the problem (locally) better conditioned. A set I of losses having constant gradients over a
subset of the hypothesis space can be summarized for purposes of optimization by a single affine
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Figure 2: On the left we see variants of SVRG with η = 1/ (8L), on the right variants of SDCA.
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Figure 3: A loss φi that is near flat (Hessian vanishes, near constant gradient) on a “ball” B ⊂ R.
B with radius 2r ‖xi‖ is induced by the (Euclidean) ball of hypotheses B (wt, r), that we prove
includes w∗. Then the loss φi does not contribute to curvature in the region of interest, and an affine
model of the sum of such φi on B can replace sampling from them. We find r in algorithms by
combining strong convexity with quantities such as duality gap or gradient norm.

function, so sampling from I should not be necessary. It so happens that SAG, SVRG and SDCA
naturally do such modeling, hence need only light modifications to realize significant gains. We
provide the details for SVRG in Section 2 (the SAG case is similar) and for SDCA in Section 3.

Other losses, while nowhere affine, are locally smooth: the logistic regression loss has gradients
with local Lipschitz constants that decay exponentially with distance from a hyperplane dependent
on xi. For such losses we cannot forgo sampling any φi permanently, but we can still obtain bounds
benefitting from local smoothness for an SVRG variant.

Next we define formally the relevant geometric properties of the optimization problem and relate
them to provable convergence improvements over existing generic bounds; we give detailed bounds
in the sequel. Throughout B (c, r) is a Euclidean ball of radius r around c.
Definition 1. We shall denote Li,r = maxw∈B(w∗,r)

∥∥▽2φi

(
x⊤
i ·
)∥∥

2
which is also the uniform

Lipschitz coefficient of ▽φi that hold at distance at most r from w∗.

Remark 2. Algorithms will use similar quantities not dependent on knowing w∗ such as L̃i,r around
a known w̃.
Definition 3. We define the average ball smoothness function S : R → R of a problem by:

S (r) =

n∑

i=1

Li,∞/

n∑

i=1

Li,r.

In Theorem 5 we see that Algorithm 1 requires fewer stochastic gradient samples to reduce loss sub-
optimality by a constant factor than SVRG with importance sampling according to global smooth-
ness. Once it has certified that the optimum w∗ is within r of the current iterate w0 it uses S (2r)
times less stochastic gradient steps. The next measure similarly increases when many losses are
affine on a ball around the optimum.
Definition 4. We define the ball affinity function S : R → [0, n] of a problem by:

A (r) =

(
n−1

n∑

i=1

1{Li,r>0}

)−1

.

In Theorem 10 we see similarly that Algorithm 2 requires fewer accesses of φi to reduce the duality
gap to any ε > 0 than SDCA with importance sampling according to global smoothness. Once it has
certified that the optimum is within distance r of the current primal iterate w = w

(
α0
)

it accesses
A (2r) times fewer φi.

In both cases, local smoothness and affinity enable us to focus a constant portion of sampling effort
on the fewer losses still challenging near the optimum; when these are few, the ratios (and hence
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algorithmic advantage) are large. We obtain these provable speedups over already fast algorithms
by using that local smoothness which we can certify. For non smooth losses such as SVM and and
absolute loss regression, we can similarly ignore irrelevant losses, leading to significant practical
improvements; the current theory for such losses is insufficient to quantify the speed ups as we do
for smooth losses.

We obtain algorithms that are simpler and sometimes much faster by using the more qualitative
observation that as iterates tend to an optimum, the set of relevant losses is generally stable and
shrinking. Then algorithms can estimate the set of relevant losses directly from quantities observed in
performing stochastic iterations, sidestepping the looseness of estimating r. There are two previous
works in this general direction. The first paper work combining non-uniform sampling and empirical
estimation of loss smoothness is [4]. They note excellent empirical performance on a variant of
SAG, but without theory ensuring convergence. We provide similarly fast (and bound free) variants
of SDCA (Section 3.2) and SVRG (Section 2.2). A dynamic importance sampling variant of SDCA
was reported in [1] without relation to local smoothness; we discuss the connection in Section 3.

2 Local smoothness and gradient descent algorithms

In this section we describe how SVRG, in contrast to the classical stochastic gradient descent (SGD),
naturally exposes local smoothness in losses. Then we present two variants of SVRG that realize
these gains. We begin by considering a single loss when close to the optimum and for simplicity
assume R ≡ 0. Assume a small ball B = B (w, r) around our current estimate w includes around
the optimum w∗, and B is contained in a flat region of φi, and this holds for a large proportion of
the n losses.

SGD and its descendent SVRG (with importance sampling) use updates of form wt+1 = wt −
ηvti/ (pin), where Ei∼pv

t
i/ (pin) = ▽F (wt) is an unbiased estimator of the full gradient of the loss

term F (w) = n−1
∑n

i=1 φi

(
x⊤
i w
)
. SVRG uses

vti =
(
▽φi

(
x⊤
i w

t
)
− ▽φi

(
x⊤
i w̃
))

/ (pin) + ▽F (w̃)

where w̃ is some reference point, with the advantage that vti has variance that vanishes as wt, w̃ →
w∗. We point out in addition that when w̃, wt ∈ B and ▽φi

(
x⊤
i ·
)

is constant on B the effects of
sampling φi cancels out and vti = ▽F (w̃). In particular, we can set pti = 0 with no loss of infor-
mation. More generally when ▽φi

(
x⊤
i ·
)

is near constant on B (small Li,r) the difference between
the sampled values of ▽φi in vti is very small and pti can be similarly small. We formalize this in the
next section, where we localize existing theory that applied importance sampling to adapt SVRG
statically to losses with varied global smoothness.

2.1 The Local SVRG algorithm

Halving the suboptimality of a solution using SVRG has two parts: computing an exact gradient at a
reference point, and performing many stochastic gradient descent steps. The sampling distribution,
step size and number of iterations in the latter are determined by smoothness of the losses. Algorithm
1, Local-SVRG, replaces the global bounds on gradient change Li with local ones Li,r, made valid
by restricting iterations to a small ball certified to contain the optimum. This allows us to leverage
previous algorithms and analysis, maintaining previous guarantees and improving on them when
S (r) is large.

For this section we assume P = F ; as in the initial version of SVRG [2], we may incorporate
a smooth regularizer (though in a different way, explained later). This allows us to apply the ex-
isting Prox-SVRG algorithm [7] and its theory; instead of using the proximal operator for fixed
regularization, we use it to localize (by projections) the stochastic descent to a ball B around the ref-
erence point w̃ see Algorithm 1. Then the theory developed around importance sampling and global
smoothness applies to sharper local smoothness estimates that hold on B (ignoring φi which are
affine on B is a special case). This allows for fewer stochastic iterations and using a larger stepsize,
obtaining speedups that are problem dependent but often large in late stages; see Figure 2. This is
formalized in the following theorem.
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Algorithm 1 Local SVRG is an application of ProxSVRG with w̃ dependent regularization. This
portion reduces suboptimality by a constant factor, apply iteratively to minimize loss.

1. Compute ṽ = ▽F (w̃)

2. Define r = 2
µ ‖ṽ‖, R (w) = iB(w̃,r) =

{
0 w ∈ B (w̃, r)

∞ otherwise
(by µ strong convexity, w∗ ∈

B (w̃, r))

3. For each i, compute L̃i,r = maxw∈B(w̃,r)▽2φi

(
x⊤
i w
)

4. Define a probability distribution: pi ∝ L̃i,r, weighted Lipschitz constant L̃p =

maxi L̃i,r/ (npi) and step size η = 1
16L̃p

.

5. Apply the inner loop of Prox-SVRG:

(a) Set w0 = w̃

(b) For t ∈ {1, . . . ,m}:
i. Choose it ∼ p

ii. Compute vt =
(
▽φit

(
wt−1

)
− ▽φit (x̃)

)
/ (npit) + ṽ

iii. wt = proxηR
(
wt−1 − ηvt

)

(c) Return ŵ = m−1
∑

t∈[m] w
t

Theorem 5. Let w̃ be an initial solution such that ▽F (w̃) certifies that w∗ ∈ B = B (w̃, r).
Algorithm 1 finds ŵ with

EF (ŵ)− F (w∗) ≤ (F (w̃)− F (w∗)) /2

using O (d (n+m)) time, where m = 128
µ n−1

∑n
i=1 Li,2r + 3.

Remark 6. In the difficult case that is ill conditioned even locally so that 128n−1
∑n

i=1 Li,2r ≫ nµ,
the term n is negligible and the ratio between complexities of Algorithm 1 and an SVRG using
global smoothness approaches S (2r).

Proof. In the initial pass on the data, compute ▽F (w̃) , r and L̃i,r ≤ Li,2r. We then apply a single
round of Algorithm Prox-SVRG of [7], with the regularizer R (x) = χB(w̃,r) localizing around
the reference point. Then we may apply Theorem 1 of [7] with local L̃i,r instead of the global Li

required there for general proximal operators. This allows us to use the corresponding larger stepsize
η = 1

16Lp
= 1

16n−1
∑

n
i=1 L̃i,r

.

Remark 7. The use of projections (hence the restriction to smooth regularization) is necessary be-
cause the local smoothness is restricted to B, and venturing outside B with a large step size may
compromise convergence entirely. While excursions outside B are difficult to control in theory, in
practice skipping the projection entirely does not seem to hurt convergence. Informally, stepping far
from B requires moving consistently against ▽F , which is an unlikely event.
Remark 8. The theory requires m stochastic steps per exact gradient to guarantee any improvement
at all, but for ill conditioned problems this is often very pessimistic. In practice, the first O (n)
stochastic steps after an exact gradient provide most of the benefit. In this heuristic scenario, the
computational benefit of Theorem 5 is through the sampling distribution and the larger step size.
Enlarging the step size without accompanying theory often gains a corresponding speed up to a
certain precision but the risk of non convergence materializes frequently.

While [2] incorporated a smooth R by adding it to every loss function, this could reduce the smooth-
ness (increase L̃i,r) inherent in the losses hence reducing the benefits of our approach. We instead
propose to add a single loss function defined as nR; that this is not of form φi

(
x⊤
i w
)

poses no real
difficulty because Local-SVRG depends on losses only through their gradients and smoothness.

The main difficulty with the approach of this section is that in early stages r is large, in part because
µ is often very small (µ = n−α for α ∈ {0.5, 1} are common choices), leading to loose bounds
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on L̃i,r. In some cases the speed up is only obtained when the precision is already satisfactory; we
consider a less conservative scheme in the next section.

2.2 The Empirical Affinity SVRG algorithm

Local-SVRG relies on local smoothness to certify that some ∆t
i =

∥∥▽φi

(
x⊤
i w

t
)
− ▽φi

(
x⊤
i w̃
)∥∥

are small. In contrast, Empirical Affinity SVRG (Algorithm 4) takes ∆t
i > t to be evidence that

a loss is active; when ∆t
i = 0 several times, that is evidence of local affinity of the loss, hence it

can be sampled less often. This strategy deemphasizes locally affine losses even when r is too large
to certify it, thereby focuses work on the relevant losses much earlier. Half of the time we sample
proportional to the global bounds Li which keeps estimates of ∆t

i current, and also bounds the
variance when some ∆t

i increases from zero to positive. A benefit of using ∆t
i is that it is observed

at every sample of i without additional work. Pseudo code for the slightly long Algorithm 4 is in the
supplementary material for space reasons.

3 Stochastic Dual Coordinate Ascent (SDCA)

The SDCA algorithm solves P through the dual problem

D (α) = −n−1
n∑

i=1

φ∗
i (−αi) +R∗ (w (α))

where w (α) = ▽R∗ ( 1
λn

∑n
i=1 xiαi

)
. At each iteration, SDCA chooses i at random according to

pt, and updates the αi corresponding to the loss φi to increase D. This scheme has been used for
particular losses before, and was analyzed in [6] obtaining linear rates for general smooth losses,
uniform sampling and l2 regularization, and recently generalized in [10] to other regularizers and
general sampling distributions. In particular, [10] show improved bounds and performance by stati-
cally adapting to the global smoothness properties of losses; using a distribution pi ∝ 1+Li (nµ)

−1,
it suffices to perform O

((
n+

Lavg

µ

)
log
((

n+
Lavg

µ

)
ε−1
))

iterations to obtain an expected du-
ality gap of at most ε. While SDCA is very different from gradient descent methods, it shares the
property that when the current state of the algorithm (in the form of αi) already matches the deriva-
tive information for φi, the update does not require φi and can be skipped. As we’ve seen in Figure
1, many losses converge αi → α∗

i very quickly; we will show that local affinity is a sufficient
condition.

3.1 The Affine-SDCA algorithm

The algorithmic approach for exploiting locally affine losses in SDCA is very different from that
for gradient descent style algorithms; for some affine losses we certify early that some αi are in
their final form (see Lemma 9) and henceforth ignore them. This applies only to locally affine (not
just smooth) losses, but unlike Local-SVRG, does not require modifying the algorithm for explicit
localization. We use a reduction to obtain improved rates while reusing the theory of [9] for the
remaining points. These results are stated for squared Euclidean regularization, but hold for strongly
convex R as in [10].

Lemma 9. Let wt = w (αt) ∈ B (w∗, r), and let {gi} =
⋃

w∈B(wt,r) φ
′
i

(
x⊤
i w
)
; in other words,

φi

(
x⊤
i ·
)

is affine on B (wt, r) which includes w∗. Then we can compute the optimal value α∗
i =

−gi.

Proof. As stated in Section 7 of [6], for each i, we have −α∗
i = φ′

i

(
x⊤
i w

∗). Then if φ′
i

(
x⊤
i w
)

is a
constant singleton on B (wt, r) containing w∗, then in particular that is −α∗

i .

The lemma enables Algorithm 2 to ignore a growing proportion of losses. The overall convergence
this enables is given by the following.
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Algorithm 2 Affine-SDCA: adapting to locally affine φi, with speedup approximately A (r).
1. α0 = 0 ∈ Rn, I0 = ∅.
2. For τ ∈ {1, . . . }:

(a) w̃τ = w
(
α(τ−1)m

)
; Compute rτ =

√
2
(
P (w̃τ )−D

(
α(τ−1)m

))
/µ

(b) Compute Iτ =
{
i :
∣∣∣
⋃

w∈B(wτ ,r) φ
′
i

(
x⊤
i w̃

τ
)∣∣∣ = 1

}

(c) For i ∈ Iτ\Iτ−1: α(τ−1)n
i = −φ′

i

(
x⊤
i w̃

τ
)

(d) pτi ∝
{
0 i ∈ Iτ

1 + Li (nµ)
−1

otherwise
, si =

{
0 i ∈ Iτ

s/pτi otherwise

(e) For t ∈ [(τ − 1)m+ 1, τm]:
i. Choose it ∼ pτ

ii. Compute ∆αt
it = sit ·

(
φ′
it

(
x⊤
itw (αt)

)
− αt−1

it

)

iii. αt
j =

{
αt−1
j +∆αt

j j = it

αt−1
j otherwise

Theorem 10. If at epoch τ Algorithm 2 is at duality gap ετ , it will achieve expected duality gap ε

in at most
(
n′ +

A−1(2r)L′
avg

µ

)
log
((

n′ +
A−1(2r)L′

avg

µ

)
ετ

ε

)
iterations, where n′ = n − |Iτ | and

L′
avg =

n′−1 ∑
i∈[n]\Iτ Li

µ .

Remark 11. Assuming Li = L for simplicity, and recalling A (2r) ≤ n/n′, we find the number
of iterations is reduced by a factor of at least A (2r), compared to using pi ∝ 1 + Li (nµ)

−1. In
contrast, the cost of the steps 2a to 2d added by Algorithm 2 is at most a factor of O ((m+ n) /m),
which may be driven towards one by the choice of m.

Recent work [1] modified SDCA for dynamic importance sampling dependent on the so called dual
residual:

κi = αi + φ′
i

(
x⊤
i w (α)

)

(where by φ′
i (w) we refer to the derivative of φi at w) which is 0 at α∗. They exhibit practical

improvement in convergence, especially for smooth SVM, and theoretical speed ups when κ is
sparse (for an impractical version of the algorithm), but [1] does not tell us when this pre-condition
holds, nor the magnitude of the expected benefit in terms of properties of the problem (as opposed
to algorithm state such as κ). In the context of locally flat losses such as smooth SVM, we answer
these questions through local smoothness: Lemma 9 shows κi tends to zero for losses that are locally
affine on a ball around the optimum, and the practical Algorithm 2 realizes the benefit when this
certification comes into play, as quantified in terms of A (r).

3.2 The Empirical ∆ SDCA algorithm

Algorithm 2 uses local affinity and a small duality gap to certify the optimality of some αi, avoiding
calculating ∆αi that are zero or useless; naturally r is small enough only late in the process. Algo-
rithm 3 instead dedicates half of samples in proportion to the magnitude of recent ∆αi (the other
half chosen uniformly). As Figure 2 illustrates, this approach leads to significant speed up much
earlier than the approach based on duality gap certification of local affinity. While we it is not clear
that we can prove for Algorithm 3 a bound that strictly improves on Algorithm 2, it is worth noting
that except for (probably rare) updates to i ∈ Iτ , and a factor of 2, the empirical algorithm should
quickly detect all locally affine losses hence obtain at least the speed up of the certifying algorithm.
In addition, it naturally adapts to the expected small updates of locally smooth losses. Note that ∆αi

is closely related to (and might be replacable by) κ, but the current algorithm differs significantly
from those in [1] in how these quantities are used to guide sampling.
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Algorithm 3 Empirical ∆ SDCA
1. α0 = 0 ∈ Rn, At

i = 0.
2. For τ ∈ {1, . . . }:

(a) pτ = 0.5pτ,1 + 0.5p2 where pτ,1i ∝ A
(τ−1)m
i and p2i = n−1

(b) For t ∈ [(τ − 1)m+ 1, τm]:
i. Choose it ∼ pτ

ii. Compute ∆αt
it = sit ·

(
φ′
it

(
x⊤
itw (αt)

)
− αt−1

it

)

iii. At
j =

{
0.5At−1

j + 0.5
∣∣∆αt

j

∣∣ j = it

At−1
j otherwise

iv. αt
j =

{
αt−1
j +∆αt

j j = it

αt−1
j otherwise

4 Empirical evaluation

We applied the same algorithms with almost1 the same parameters to 4 additional classification
datasets to demonstrate the impact of our algorithm variants more widely. The results for SDCA are
in Figure 4, those for SVRG in Figure 5 in Section 7 in the supplementary material for lack of space.
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Figure 4: SDCA variant results on four additional datasets. The advantages of using local smoothness
are significant on the harder datasets.
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[1] Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent with adaptive

probabilities. arXiv preprint arXiv:1502.08053, 2015.
[2] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-

ance reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.
1On one of the new datasets, SVRG with a ratio of step-size to Lavg more aggressive than theory suggests

stopped converging; hence we changed all runs to use the permissible 1/8. No other parameters were changed
adapted to the dataset.

8



[3] Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient method
and its application to regularized empirical risk minimization. arXiv preprint arXiv:1407.1296,
2014.

[4] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, 2013.

[5] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization. Mathematical Programming, pages 1–41, 2013.

[6] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.

[7] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[8] Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized empir-
ical risk minimization. arXiv preprint arXiv:1409.3257, 2014.

[9] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. arXiv
preprint arXiv:1401.2753, 2014.

[10] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. Proceedings of The 32nd International Conference on Machine Learning,
2015.

9


