NIPS Proceedingsβ

Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Spotlight

Abstract

Despite the recent achievements in machine learning, we are still very far from achieving real artificial intelligence. In this paper, we discuss the limitations of standard deep learning approaches and show that some of these limitations can be overcome by learning how to grow the complexity of a model in a structured way. Specifically, we study the simplest sequence prediction problems that are beyond the scope of what is learnable with standard recurrent networks, algorithmically generated sequences which can only be learned by models which have the capacity to count and to memorize sequences. We show that some basic algorithms can be learned from sequential data using a recurrent network associated with a trainable memory.