NIPS Proceedingsβ

Attention-Based Models for Speech Recognition

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Spotlight


Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks including machine translation, handwriting synthesis and image caption generation. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation reaches a competitive 18.6\% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18\% PER in single utterances and 20\% in 10-times longer (repeated) utterances. Finally, we propose a change to the attention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6\% level.