NIPS Proceedingsβ

Information-theoretic lower bounds for convex optimization with erroneous oracles

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Reviews]

Authors

Conference Event Type: Spotlight

Abstract

We consider the problem of optimizing convex and concave functions with access to an erroneous zeroth-order oracle. In particular, for a given function $x \to f(x)$ we consider optimization when one is given access to absolute error oracles that return values in [f(x) - \epsilon,f(x)+\epsilon] or relative error oracles that return value in [(1+\epsilon)f(x), (1 +\epsilon)f (x)], for some \epsilon larger than 0. We show stark information theoretic impossibility results for minimizing convex functions and maximizing concave functions over polytopes in this model.