NIPS Proceedingsβ

Market Scoring Rules Act As Opinion Pools For Risk-Averse Agents

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Spotlight


A market scoring rule (MSR) – a popular tool for designing algorithmic prediction markets – is an incentive-compatible mechanism for the aggregation of probabilistic beliefs from myopic risk-neutral agents. In this paper, we add to a growing body of research aimed at understanding the precise manner in which the price process induced by a MSR incorporates private information from agents who deviate from the assumption of risk-neutrality. We first establish that, for a myopic trading agent with a risk-averse utility function, a MSR satisfying mild regularity conditions elicits the agent’s risk-neutral probability conditional on the latest market state rather than her true subjective probability. Hence, we show that a MSR under these conditions effectively behaves like a more traditional method of belief aggregation, namely an opinion pool, for agents’ true probabilities. In particular, the logarithmic market scoring rule acts as a logarithmic pool for constant absolute risk aversion utility agents, and as a linear pool for an atypical budget-constrained agent utility with decreasing absolute risk aversion. We also point out the interpretation of a market maker under these conditions as a Bayesian learner even when agent beliefs are static.