NIPS Proceedingsβ

A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


We propose a simple, scalable, and fast gradient descent algorithm to optimize a nonconvex objective for the rank minimization problem and a closely related family of semidefinite programs. With $O(r^3 \kappa^2 n \log n)$ random measurements of a positive semidefinite $n\times n$ matrix of rank $r$ and condition number $\kappa$, our method is guaranteed to converge linearly to the global optimum.