NIPS Proceedingsβ

Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


We consider the problem of recovering a low-rank tensor from its noisy observation. Previous work has shown a recovery guarantee with signal to noise ratio $O(n^{\ceil{K/2}/2})$ for recovering a $K$th order rank one tensor of size $n\times \cdots \times n$ by recursive unfolding. In this paper, we first improve this bound to $O(n^{K/4})$ by a much simpler approach, but with a more careful analysis. Then we propose a new norm called the \textit{subspace} norm, which is based on the Kronecker products of factors obtained by the proposed simple estimator. The imposed Kronecker structure allows us to show a nearly ideal $O(\sqrt{n}+\sqrt{H^{K-1}})$ bound, in which the parameter $H$ controls the blend from the non-convex estimator to mode-wise nuclear norm minimization. Furthermore, we empirically demonstrate that the subspace norm achieves the nearly ideal denoising performance even with $H=O(1)$.