NIPS Proceedingsβ

Subset Selection by Pareto Optimization

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Selecting the optimal subset from a large set of variables is a fundamental problem in various learning tasks such as feature selection, sparse regression, dictionary learning, etc. In this paper, we propose the POSS approach which employs evolutionary Pareto optimization to find a small-sized subset with good performance. We prove that for sparse regression, POSS is able to achieve the best-so-far theoretically guaranteed approximation performance efficiently. Particularly, for the \emph{Exponential Decay} subclass, POSS is proven to achieve an optimal solution. Empirical study verifies the theoretical results, and exhibits the superior performance of POSS to greedy and convex relaxation methods.