NIPS Proceedingsβ

Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Normalized random measures (NRMs) provide a broad class of discrete random measures that are often used as priors for Bayesian nonparametric models. Dirichlet process is a well-known example of NRMs. Most of posterior inference methods for NRM mixture models rely on MCMC methods since they are easy to implement and their convergence is well studied. However, MCMC often suffers from slow convergence when the acceptance rate is low. Tree-based inference is an alternative deterministic posterior inference method, where Bayesian hierarchical clustering (BHC) or incremental Bayesian hierarchical clustering (IBHC) have been developed for DP or NRM mixture (NRMM) models, respectively. Although IBHC is a promising method for posterior inference for NRMM models due to its efficiency and applicability to online inference, its convergence is not guaranteed since it uses heuristics that simply selects the best solution after multiple trials are made. In this paper, we present a hybrid inference algorithm for NRMM models, which combines the merits of both MCMC and IBHC. Trees built by IBHC outlinespartitions of data, which guides Metropolis-Hastings procedure to employ appropriate proposals. Inheriting the nature of MCMC, our tree-guided MCMC (tgMCMC) is guaranteed to converge, and enjoys the fast convergence thanks to the effective proposals guided by trees. Experiments on both synthetic and real world datasets demonstrate the benefit of our method.