NIPS Proceedingsβ

SubmodBoxes: Near-Optimal Search for a Set of Diverse Object Proposals

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


This paper formulates the search for a set of bounding boxes (as needed in object proposal generation) as a monotone submodular maximization problem over the space of all possible bounding boxes in an image. Since the number of possible bounding boxes in an image is very large $O(#pixels^2)$, even a single linear scan to perform the greedy augmentation for submodular maximization is intractable. Thus, we formulate the greedy augmentation step as a Branch-and-Bound scheme. In order to speed up repeated application of B\&B, we propose a novel generalization of Minoux’s ‘lazy greedy’ algorithm to the B\&B tree. Theoretically, our proposed formulation provides a new understanding to the problem, and contains classic heuristic approaches such as Sliding Window+Non-Maximal Suppression (NMS) and and Efficient Subwindow Search (ESS) as special cases. Empirically, we show that our approach leads to a state-of-art performance on object proposal generation via a novel diversity measure.