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Abstract

Deep learning has recently been introduced to the field of low-level computer
vision and image processing. Promising results have been obtained in a num-
ber of tasks including super-resolution, inpainting, deconvolution, filtering, etc.
However, previously adopted neural network approaches such as convolutional
neural networks and sparse auto-encoders are inherently with translation invariant
operators. We found this property prevents the deep learning approaches from
outperforming the state-of-the-art if the task itself requires translation variant in-
terpolation (TVI). In this paper, we draw on Shepard interpolation and design
Shepard Convolutional Neural Networks (ShCNN) which efficiently realizes end-
to-end trainable TVI operators in the network. We show that by adding only a few
feature maps in the new Shepard layers, the network is able toachieve stronger
results than a much deeper architecture. Superior performance on both image in-
painting and super-resolution is obtained where our systemoutperforms previous
ones while keeping the running time competitive.

1 Introduction

In the past a few years, deep learning has been very successful in addressing many aspects of visual
perception problems such as image classification, object detection, face recognition [1, 2, 3], to name
a few. Inspired by the breakthrough in high-level computer vision, several attempts have been made
very recently to apply deep learning methods in low-level vision as well as image processing tasks.
Encouraging results has been obtained in a number of tasks including image super-resolution [4],
inpainting [5], denosing [6], image deconvolution [7], dirt removal [8], edge-aware filtering [9] etc.
Powerful models with multiple layers of nonlinearity such as convolutional neural networks (CNN),
sparse auto-encoders, etc. were used in the previous studies. Notwithstanding the rapid progress and
promising performance, we notice that the building blocks of these models are inherently translation
invariant when applying to images. The property makes the network architecture less efficient in
handling translation variant operators, exemplified by theimage interpolation operation.

Figure 1 illustrates the problem of image inpainting, a typical translation variant interpolation (TVI)
task. The black region in figure 1(a) indicates the missing region where the four selected patches
with missing parts are visualized in figure 1(b). The interpolation process for the central pixel in
each patch is done by four different weighting functions shown in the bottom of figure 1(b). This
process cannot be simply modeled by a single kernel due to theinherent spatially varying property.

In fact, the TVI operations are common in many vision applications. Image super-resolution, which
aims to interpolate a high resolution image with a low resolution observation also suffers from the
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Figure 1: Illustration of translation variant interpolation. (a) The application of inpainting. The black regions
indicate the missing part. (b) Four selected patches. The bottom row shows the kernels for interpolating the
central pixel of each patch.

same problem: different local patches have different pattern of anchor points. We will show that it
is thus less optimal to use the traditional convolutional neural network to do the translation variant
operations for super-resolution task.

In this paper, we draw on Shepard method [10] and devise a novel CNN architecture named Shep-
ard Convolutional Neural Networks (ShCNN) which efficiently equips conventional CNN with the
ability to learn translation variant operations for irregularly spaced data. By adding only a few
feature maps in the new Shepard layer and optimizing a more powerful TVI procedure in the end-
to-end fashion, the network is able to achieve stronger results than a much deeper architecture. We
demonstrate that the resulting system is general enough to benefit a number of applications with TVI
operations.

2 Related Work

Deep learning methods have recently been introduced to the area of low-level computer vision and
image processing. Burger et al. [6] used a simple multi-layer neural network to directly learn a
mapping between noisy and clear image patches. Xie et al. [5]adopted a sparse auto-encoder and
demonstrated its ability to do blind image inpainting. A three-layer CNN was used in [8] to tackle
of problem of rain drop and dirt. It demonstrated the abilityof CNN to blindly handle translation
variant problem in real world challenges.

Xu et al. [7] advocated the use of generative approaches to guide the design of the CNN for decon-
volution tasks. In [9], edge-aware filters can be well approximated using CNN. While it is feasible
to use the translation invariant operators, such as convolution, to obtain the translation variant results
in a deep neural network architecture, it is less effective in achieving high quality results for inter-
polation operations. The first attempt using CNN to perform image super-resolution [4] connected
the CNN approach to the sparse coding ones. But it failed to beat the state-of-the-art super resolu-
tion system [11]. In this paper, we focus on the design of deepneural network layer that better fits
the translation variant interpolation tasks. We note that TVI is the essential step for a wide range of
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low-level vision applications including inpainting, dirtremoval, noise suppression, super-resolution,
to name a few.

3 Analysis

Deep learning approaches without explicit TVI mechanism generated reasonable results in a few
tasks requiring translation variant property. To some extent, deep architecture with multiple layers of
nonlinearity is expressive to approximate certain TVI operations given sufficient amount of training
data. It is, however, non-trivial to beat non-CNN based approaches while ensuring the high efficiency
and simplicity.

To see this, we experimented with the CNN architecture in [4]and [8] and trained a CNN with three
convolutional layers by using 1 million synthetic corrupted/clear image pairs. Network and training
details as well as the concrete statistics of the data will becovered in the experiment section. Typical
test images are shown in the left column of figure 2 whereas theresults of this model are displayed
in the mid-left column of the same figure. We found that visually very similar results as in [5] are
obtained, namely obvious residues of the text are still leftin the images. We also experimented with
a much deeper network by adding more convolutional layers, virtually replicating the network in
[8] by 2,3, and 4 times. Although slight visual differences are found in the results, no fundamental
improvement in the missing regions is observed, namely residue still remains.

A sensible next step is to explicitly inform the network about where the missing pixels are so that
the network has the opportunity to figure out more plausible solutions for TVI operations. For many
applications, the underlying mask indicating the processed regions can be detected or be known
in advance. Sample applications include image completion/inpainting, image matting, dirt/impulse
noise removal, etc. Other applications such as sparse pointpropagation and super resolution by
nature have the masks for unknown regions.

One way to incorporate the mask into the network is to treat itas an additional channel of the input.
We tested this idea with the same set of network and experimental settings as the previous trial.
The results showed that such additional piece of information did bring about improvement but still
considerably far from satisfactory in removing the residues. Results are visualized in the mid-right
column of figure 2. To learn a tractable TVI model, we devise inthe next session a novel architecture
with an effective mechanism to exploit the information contained in the mask.

4 Shepard Convolutional Neural Networks

We initiate the attempt to leverage the traditional interpolation framework to guide the design of
neural network architecture for TVI. We turn to the Shepard framework [10] which weighs known
pixels differently according to their spatial distances tothe processed pixel. Specifically, Shepard
method can be re-written in a convolution form

Jp =

{

(K ∗ I)p / (K ∗M)p if Mp = 0
Ip if Mp = 1

(1)

whereI andJ are the input and output images, respectively.p indexes the image coordinates.M is
the binary indicator.Mp = 0 indicates the pixel values are unknown.∗ is the convolution operation.
K is the kernel function with its weights inversely proportional to the distance between a pixel
with Mp = 1 and the pixel to process. The element-wise division betweenthe convolved image
and the convolved mask naturally controls the way how pixel information is propagated across the
regions. It thus enables the capability to handle interpolation for irregularly-spaced data and make
it possible translation variant. The key element in Shepardmethod affecting the interpolation result
is the definition of the convolution kernel. We thus propose anew convolutional layer in the light of
Shepard method but allow for a more flexible, data-driven kernel design. The layer is referred to as
the Shepard interpolation layer.
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Figure 2: Comparison between ShCNN and CNN in image inpainting. Input images (Left). Results from a
regular CNN (Mid-left). Results from a regular CNN trained with masks (Mid-right). Our results (Right).

4.1 The Shepard Interpolation Layer

The feed-forward pass of the trainable interpolation layercan be mathematically described as the
following equation,

F n
i (F n � 1; M n ) = � (

X

j

K n
ij � F n � 1

j

K n
ij � M n

j
+ bn ); n = 1 ; 2; 3; ::: (2)

wheren is the index of layers. The subscripti in F n
i is the index of feature maps in layern. j

in F n � 1
j index the feature maps in layern � 1. F n � 1 andM n are the input and the mask of the

current layer respectively.F n � 1 represents all the feature maps in layern � 1. K ij are the trainable
kernels which are shared in both numerator and denominator in computing the fraction. Concretely,
sameK ij is to be convolved with both the activations of the last layerin the numerator and the
mask of the current layerM n in the denominator.F n � 1 could be the output feature maps of regular
layers in a CNN such as a convolutional layer or a pooling layer. It could also be a previous Shepard
interpolation layer which is a function of bothF n � 2 andM n � 1. Thus Shepard interpolation layers
can actually be stacked together to form a highly nonlinear interpolation operator.b is the bias
term and� is the nonlinearity imposed to the network.F is a smooth and differentiable function,
therefore standard back-propagation can be used to train the parameters.

Figure 3 illustrates our neural network architecture with Shepard interpolation layers. The inputs of
the Shepard interpolation layer are images/feature maps aswell as masks indicating where interpo-
lation should occur. Note that the interpolation layer can be applied repeatedly to construct more
complex interpolation functions with multiple layers of nonlinearity. The mask is a binary map of
value one for the known area, zero for the missing area. Same kernel is applied to the image and
the mask. We note that the mask for layern + 1 can be automatically generated by the result of
previous convolved maskK n � M n , by zeroing out insigni�cant values and thresholding it. Itis
important for tasks with relative large missing areas such as inpainting where sophisticated ways of
propagation may be learned from data by multi-stage Shepardinterpolation layer with nonlinearity.
This is also a �exible way to balance the kernel size and the depth of the network. We refer to
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