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Abstract

Deep learning has recently been introduced to the field ofléwm&l computer
vision and image processing. Promising results have betineld in a num-
ber of tasks including super-resolution, inpainting, deaution, filtering, etc.
However, previously adopted neural network approachels ascconvolutional
neural networks and sparse auto-encoders are inhereilyramnslation invariant
operators. We found this property prevents the deep legiraproaches from
outperforming the state-of-the-art if the task itself riegsi translation variant in-
terpolation (TVI). In this paper, we draw on Shepard intéafion and design
Shepard Convolutional Neural Networks (ShCNN) which edfitly realizes end-
to-end trainable TVI operators in the network. We show tlyadbding only a few
feature maps in the new Shepard layers, the network is aldetieve stronger
results than a much deeper architecture. Superior perfurenan both image in-
painting and super-resolution is obtained where our systgtmerforms previous
ones while keeping the running time competitive.

1 Introduction

In the past a few years, deep learning has been very suctiesafldressing many aspects of visual
perception problems such as image classification, objéettien, face recognition[1L] 2| 3], to name
a few. Inspired by the breakthrough in high-level computsion, several attempts have been made
very recently to apply deep learning methods in low-levsion as well as image processing tasks.
Encouraging results has been obtained in a number of tasksling image super-resolution|[4],
inpainting [5], denosingd [6], image deconvolution [7],tdiemoval [8], edge-aware filteringl[9] etc.
Powerful models with multiple layers of nonlinearity suchcmnvolutional neural networks (CNN),
sparse auto-encoders, etc. were used in the previousstinbevithstanding the rapid progress and
promising performance, we notice that the building blodkihese models are inherently translation
invariant when applying to images. The property makes theari architecture less efficient in
handling translation variant operators, exemplified byith&ge interpolation operation.

Figurel illustrates the problem of image inpainting, a¢gptranslation variant interpolation (TVI)
task. The black region in figufg 1(a) indicates the missingorewhere the four selected patches
with missing parts are visualized in figure 1(b). The intéagion process for the central pixel in
each patch is done by four different weighting functionsvahdn the bottom of figur€l1(b). This
process cannot be simply modeled by a single kernel due tfoltleeent spatially varying property.

In fact, the TVI operations are common in many vision appi@s. Image super-resolution, which
aims to interpolate a high resolution image with a low resoluobservation also suffers from the
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Figure 1: lllustration of translation variant interpotati (a) The application of inpainting. The black regions
indicate the missing part. (b) Four selected patches. Therhaow shows the kernels for interpolating the
central pixel of each patch.

same problem: different local patches have different patté anchor points. We will show that it
is thus less optimal to use the traditional convolutionalraénetwork to do the translation variant
operations for super-resolution task.

In this paper, we draw on Shepard methiod [10] and devise d @M architecture named Shep-
ard Convolutional Neural Networks (ShCNN) which efficignglquips conventional CNN with the
ability to learn translation variant operations for irrégyly spaced data. By adding only a few
feature maps in the new Shepard layer and optimizing a maoseifol TVI procedure in the end-
to-end fashion, the network is able to achieve strongeitsehian a much deeper architecture. We
demonstrate that the resulting system is general enouginifiba number of applications with TVI
operations.

2 Reated Work

Deep learning methods have recently been introduced torézedd low-level computer vision and
image processing. Burger et al.] [6] used a simple multiflaygiral network to directly learn a
mapping between noisy and clear image patches. Xie etlahdépted a sparse auto-encoder and
demonstrated its ability to do blind image inpainting. Aabdayer CNN was used inl[8] to tackle
of problem of rain drop and dirt. It demonstrated the abitifyCNN to blindly handle translation
variant problem in real world challenges.

Xu et al. [7] advocated the use of generative approachesitie goe design of the CNN for decon-
volution tasks. In[[9], edge-aware filters can be well apprmated using CNN. While it is feasible
to use the translation invariant operators, such as cotiwaluo obtain the translation variant results
in a deep neural network architecture, it is less effectivadhieving high quality results for inter-
polation operations. The first attempt using CNN to perfamage super-resolution|[4] connected
the CNN approach to the sparse coding ones. But it failed &b the state-of-the-art super resolu-
tion systeml[111]. In this paper, we focus on the design of derpal network layer that better fits
the translation variant interpolation tasks. We note thati$ the essential step for a wide range of



low-level vision applications including inpainting, digmoval, noise suppression, super-resolution,
to name a few.

3 Analysis

Deep learning approaches without explicit TVI mechanismegated reasonable results in a few
tasks requiring translation variant property. To somemxtieep architecture with multiple layers of
nonlinearity is expressive to approximate certain TVI gpiens given sufficient amount of training
data. Itis, however, non-trivial to beat non-CNN based apphes while ensuring the high efficiency
and simplicity.

To see this, we experimented with the CNN architecturelimfd] [8] and trained a CNN with three
convolutional layers by using 1 million synthetic corrugidear image pairs. Network and training
details as well as the concrete statistics of the data witldwered in the experiment section. Typical
test images are shown in the left column of figure 2 whereassthdts of this model are displayed
in the mid-left column of the same figure. We found that visuaéry similar results as ir [5] are
obtained, namely obvious residues of the text are stillitetie images. We also experimented with
a much deeper network by adding more convolutional layeargjally replicating the network in
[8] by 2,3, and 4 times. Although slight visual differences found in the results, no fundamental
improvement in the missing regions is observed, namelguesstill remains.

A sensible next step is to explicitly inform the network abwinere the missing pixels are so that
the network has the opportunity to figure out more plausibletons for TVI operations. For many
applications, the underlying mask indicating the procgssgions can be detected or be known
in advance. Sample applications include image complétipainting, image matting, dirt/impulse
noise removal, etc. Other applications such as sparse pmpggation and super resolution by
nature have the masks for unknown regions.

One way to incorporate the mask into the network is to tress @n additional channel of the input.
We tested this idea with the same set of network and expetahsettings as the previous trial.
The results showed that such additional piece of informadid bring about improvement but still
considerably far from satisfactory in removing the resglugesults are visualized in the mid-right
column of figuré&R. To learn a tractable TVI model, we devistagnext session a novel architecture
with an effective mechanism to exploit the information @néd in the mask.

4 Shepard Convolutional Neural Networks

We initiate the attempt to leverage the traditional intéaion framework to guide the design of
neural network architecture for TVI. We turn to the Shepaaairfework [10] which weighs known
pixels differently according to their spatial distanceshe processed pixel. Specifically, Shepard
method can be re-written in a convolution form

Jp:{g{*f)p/(K*NDp :]]: ﬁzz? (1)

wherel and.J are the input and output images, respectiveliyndexes the image coordinatéd is
the binary indicatorM,, = 0 indicates the pixel values are unknowis the convolution operation.
K is the kernel function with its weights inversely proporta to the distance between a pixel
with M,, = 1 and the pixel to process. The element-wise division betwikerconvolved image
and the convolved mask naturally controls the way how pixirimation is propagated across the
regions. It thus enables the capability to handle intetpmiefor irregularly-spaced data and make
it possible translation variant. The key element in Shepaethod affecting the interpolation result
is the definition of the convolution kernel. We thus proposewa convolutional layer in the light of
Shepard method but allow for a more flexible, data-drivemé&kedesign. The layer is referred to as
the Shepard interpolation layer.



Figure 2: Comparison between ShCNN and CNN in image inpaintinput images (Left). Results from a
regular CNN (Mid-left). Results from a regular CNN trainedtwmasks (Mid-right). Our results (Right).

4.1 The Shepard Interpolation Layer

The feed-forward pass of the trainable interpolation layar be mathematically described as the
following equation,
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wheren is the index of layers. The subscriptn F" is the index of feature maps in layar |
in Fj” ! index the feature maps in layar 1. F" *andM" are the input and the mask of the

current layer respectivelfE " ! represents all the feature maps in lager 1. K jj are the trainable
kernels which are shared in both numerator and denomirmatmrputing the fraction. Concretely,
sameK j; is to be convolved with both the activations of the last layethe numerator and the
mask of the current layevl " in the denominatof=" ! could be the output feature maps of regular
layers in a CNN such as a convolutional layer or a poolinglayeould also be a previous Shepard
interpolation layer which is a function of bof” 2 andM " 1. Thus Shepard interpolation layers
can actually be stacked together to form a highly nonlinaterpolation operatorb is the bias
term and is the nonlinearity imposed to the netwotk. is a smooth and differentiable function,
therefore standard back-propagation can be used to tmipatameters.

Figure 3 illustrates our neural network architecture witleard interpolation layers. The inputs of
the Shepard interpolation layer are images/feature mapgkhas masks indicating where interpo-
lation should occur. Note that the interpolation layer carabplied repeatedly to construct more
complex interpolation functions with multiple layers ofmimearity. The mask is a binary map of
value one for the known area, zero for the missing area. Samekis applied to the image and
the mask. We note that the mask for layet 1 can be automatically generated by the result of
previous convolved mask™ M ", by zeroing out insigni cant values and thresholding it.idt
important for tasks with relative large missing areas siimpainting where sophisticated ways of
propagation may be learned from data by multi-stage Sheptmngolation layer with nonlinearity.
This is also a exible way to balance the kernel size and thgtldef the network. We refer to


















