NIPS Proceedingsβ

Distributionally Robust Logistic Regression

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Reviews]


Conference Event Type: Spotlight


This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this Wasserstein ball is chosen judiciously, we can guarantee that it contains the unknown data-generating distribution with high confidence. We then formulate a distributionally robust logistic regression model that minimizes a worst-case expected logloss function, where the worst case is taken over all distributions in the Wasserstein ball. We prove that this optimization problem admits a tractable reformulation and encapsulates the classical as well as the popular regularized logistic regression problems as special cases. We further propose a distributionally robust approach based on Wasserstein balls to compute upper and lower confidence bounds on the misclassification probability of the resulting classifier. These bounds are given by the optimal values of two highly tractable linear programs. We validate our theoretical out-of-sample guarantees through simulated and empirical experiments.