NIPS Proceedingsβ

Nearly Optimal Private LASSO

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We present a nearly optimal differentially private version of the well known LASSO estimator. Our algorithm provides privacy protection with respect to each training data item. The excess risk of our algorithm, compared to the non-private version, is $\widetilde{O}(1/n^{2/3})$, assuming all the input data has bounded $\ell_\infty$ norm. This is the first differentially private algorithm that achieves such a bound without the polynomial dependence on $p$ under no addition assumption on the design matrix. In addition, we show that this error bound is nearly optimal amongst all differentially private algorithms.