NIPS Proceedingsβ

Monotone k-Submodular Function Maximization with Size Constraints

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


A $k$-submodular function is a generalization of a submodular function, where the input consists of $k$ disjoint subsets, instead of a single subset, of the domain.Many machine learning problems, including influence maximization with $k$ kinds of topics and sensor placement with $k$ kinds of sensors, can be naturally modeled as the problem of maximizing monotone $k$-submodular functions.In this paper, we give constant-factor approximation algorithms for maximizing monotone $k$-submodular functions subject to several size constraints.The running time of our algorithms are almost linear in the domain size.We experimentally demonstrate that our algorithms outperform baseline algorithms in terms of the solution quality.