NIPS Proceedingsβ

M-Statistic for Kernel Change-Point Detection

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Detecting the emergence of an abrupt change-point is a classic problem in statistics and machine learning. Kernel-based nonparametric statistics have been proposed for this task which make fewer assumptions on the distributions than traditional parametric approach. However, none of the existing kernel statistics has provided a computationally efficient way to characterize the extremal behavior of the statistic. Such characterization is crucial for setting the detection threshold, to control the significance level in the offline case as well as the average run length in the online case. In this paper we propose two related computationally efficient M-statistics for kernel-based change-point detection when the amount of background data is large. A novel theoretical result of the paper is the characterization of the tail probability of these statistics using a new technique based on change-of-measure. Such characterization provides us accurate detection thresholds for both offline and online cases in computationally efficient manner, without the need to resort to the more expensive simulations such as bootstrapping. We show that our methods perform well in both synthetic and real world data.