NIPS Proceedingsβ

Local Expectation Gradients for Black Box Variational Inference

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We introduce local expectation gradients which is a general purpose stochastic variational inference algorithm for constructing stochastic gradients by sampling from the variational distribution. This algorithm divides the problem of estimating the stochastic gradients over multiple variational parameters into smaller sub-tasks so that each sub-task explores intelligently the most relevant part of the variational distribution. This is achieved by performing an exact expectation over the single random variable that most correlates with the variational parameter of interest resulting in a Rao-Blackwellized estimate that has low variance. Our method works efficiently for both continuous and discrete random variables. Furthermore, the proposed algorithm has interesting similarities with Gibbs sampling but at the same time, unlike Gibbs sampling, can be trivially parallelized.